期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Wave propagation control in periodic track structure through local resonance mechanism 被引量:10
1
作者 WANG Ping YI Qiang +2 位作者 ZHAO Cai-you XING Meng-ting LU J 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第12期3062-3074,共13页
Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth... Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth is narrow and the elastic wave attenuation capability within the band gap is weak.In order to effectively control the vibration and noise of track structure,the local resonance mechanism is introduced to broaden the band gap and realize wave propagation control.The locally resonant units are attached periodically on the rail,forming a new locally resonant phononic crystal structure.Then the tuning of the elastic wave band gaps of track structure is discussed,and the formation mechanism of the band gap is explicated.The research results show that a new wide and adjustable locally resonant band gap is formed after the resonant units are introduced.The phenomenon of coupling and transition can be observed between the new locally resonant band gap and the original band gap of the periodic track structure with the band gap width reaching the maximum at the coupling position.The broader band gap can be applied for vibration and noise reduction in high speed railway track structure. 展开更多
关键词 wave propagation control periodic track structure band gap local resonance mechanism transfer matrix
在线阅读 下载PDF
Running safety and seismic optimization of a fault-crossing simply-supported girder bridge for high-speed railways based on a train-track-bridge coupling system 被引量:10
2
作者 JIANG Hui ZENG Cong +3 位作者 PENG Qiang LI Xin MAXin-yi SONG Guang-song 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2449-2466,共18页
Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-sup... Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,respectively,the safe running speed limits of the high-speed train increased to 250 km/h and 100 km/h under frequent and design earthquakes,respectively. 展开更多
关键词 high-speed train train-track-bridge interaction fault-crossing ground motion train operation safety speed limit track structure optimization
在线阅读 下载PDF
Design and comparison of minimal symmetric model-subset for maneuvering target tracking 被引量:2
3
作者 Fuming Sun Xu E Hongyu Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期268-272,共5页
Model-set is utilized in state estimation for maneuver- ing target tracking. Two minimal symmetric model-subsets are designed and investigated by moment matching method, which include hypersphere-symmetric model-subse... Model-set is utilized in state estimation for maneuver- ing target tracking. Two minimal symmetric model-subsets are designed and investigated by moment matching method, which include hypersphere-symmetric model-subset and axis-symmetric model-subset, if system mode is a random variable and obeys certain probability distribution. They can be used as the fun- damental model-subset for multiple models estimation with fixed structure, variable structure and moving bank. The model-groups constructed by above designed subsets are given, which give the practical guidance for use of model-set in multiple models ap- proach with a variable structure. Simulation results show that the performances of two minimal model-set significantly outperform the corresponding model-sets with fixed spacing. 展开更多
关键词 adaptive estimation multiple models target tracking variable structure.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部