Ferrite-rich calcium sulfoaluminate(FCSA)cement is often used in special projects such as marine engineering due to its excellent resistance of seawater attack although the cost is a little high.Ground granulated blas...Ferrite-rich calcium sulfoaluminate(FCSA)cement is often used in special projects such as marine engineering due to its excellent resistance of seawater attack although the cost is a little high.Ground granulated blast furnace slag(GGBS),a byproduct of industrial production,is used as a mineral admixture to reduce concrete costs and provide excellent performance.This study aimed to investigate the impact of GGBS on the hydration properties of FCSA cement in seawater.Tests were conducted on heat of hydration,compressive strength,mass change,and pH value of pore solution of FCSA cement paste with a water-to-binder ratio of 0.45.X-ray diffraction(XRD)analysis and thermogravimetric analysis were used to determine the hydration products,while mercury intrusion porosimetry(MIP)was used to measure pore structure.The results indicated that the FCSA cement hydration showed a concentrated heat release at early age.The compressive strength of specimens consistently increased over time,where seawater curing enhanced the compressive strength of control samples.The pH value of pore solution decreased to 10.7−10.9 at 90 d when cured in seawater.The primary hydration products of FCSA cement included ettringite,iron hydroxide gel(FH_(3)),and aluminum hydroxide gel(AH_(3)).Moreover,when cured in seawater,Friedel’s salt was formed,which enhanced the compressive strength of the specimen and increased its coefficient of corrosion.Seawater curing gradually increased sample mass,and GGBS refined pore structure while reducing harmful pore proportions.These results suggest that while GGBS can refine pore structure and improve certain aspects of performance,its inclusion may also reduce compressive strength,highlighting the need for a balanced approach in its use for marine applications.展开更多
The simulation of blast furnace slag was prepared by pure chemical reagents.Test methods like DSC,XRD and SEM were used to study the effect of Al2O3 and MgO content on crystallization of blast furnace slag during fibe...The simulation of blast furnace slag was prepared by pure chemical reagents.Test methods like DSC,XRD and SEM were used to study the effect of Al2O3 and MgO content on crystallization of blast furnace slag during fiber formation.The results show that as Al2O3 and MgO contents in the sample changed,blast furnace slag was crystallized at the average temperature below 1232 K.When the ratio of Mg/Al in the samples is 0.6 calculated by Kissinger equation,crystallization activation energy is at the maximum value and the system is in the most stable condition.The sample crystallization phases are mainly calcium akermanite(2CaO?MgO?2SiO2)and gehlenite(2CaO?Al2O3?SiO2).Secondary crystallization phases are anorthite(CaAl2Si2O8),wollastonite minerals(WOLLA)and pyroxene minerals(cPyrA).Meanwhile,the principal crystallization phases of the samples are different types and have different contents,and the microstructures of the sample sections are different due to the difference between MgO/Al2O3 ratio.展开更多
基金Project(2023DJC182)supported by the Department of Science and Technology of Hubei Province,ChinaProjects(51608402,51602229)supported by the National Natural Science Foundation of ChinaProject(2021-2075-38)supported by the Department of Housing and Urban-Rural Development of Hubei Province,China。
文摘Ferrite-rich calcium sulfoaluminate(FCSA)cement is often used in special projects such as marine engineering due to its excellent resistance of seawater attack although the cost is a little high.Ground granulated blast furnace slag(GGBS),a byproduct of industrial production,is used as a mineral admixture to reduce concrete costs and provide excellent performance.This study aimed to investigate the impact of GGBS on the hydration properties of FCSA cement in seawater.Tests were conducted on heat of hydration,compressive strength,mass change,and pH value of pore solution of FCSA cement paste with a water-to-binder ratio of 0.45.X-ray diffraction(XRD)analysis and thermogravimetric analysis were used to determine the hydration products,while mercury intrusion porosimetry(MIP)was used to measure pore structure.The results indicated that the FCSA cement hydration showed a concentrated heat release at early age.The compressive strength of specimens consistently increased over time,where seawater curing enhanced the compressive strength of control samples.The pH value of pore solution decreased to 10.7−10.9 at 90 d when cured in seawater.The primary hydration products of FCSA cement included ettringite,iron hydroxide gel(FH_(3)),and aluminum hydroxide gel(AH_(3)).Moreover,when cured in seawater,Friedel’s salt was formed,which enhanced the compressive strength of the specimen and increased its coefficient of corrosion.Seawater curing gradually increased sample mass,and GGBS refined pore structure while reducing harmful pore proportions.These results suggest that while GGBS can refine pore structure and improve certain aspects of performance,its inclusion may also reduce compressive strength,highlighting the need for a balanced approach in its use for marine applications.
基金Project(51474090)supported by the National Natural Science Foundation of China
文摘The simulation of blast furnace slag was prepared by pure chemical reagents.Test methods like DSC,XRD and SEM were used to study the effect of Al2O3 and MgO content on crystallization of blast furnace slag during fiber formation.The results show that as Al2O3 and MgO contents in the sample changed,blast furnace slag was crystallized at the average temperature below 1232 K.When the ratio of Mg/Al in the samples is 0.6 calculated by Kissinger equation,crystallization activation energy is at the maximum value and the system is in the most stable condition.The sample crystallization phases are mainly calcium akermanite(2CaO?MgO?2SiO2)and gehlenite(2CaO?Al2O3?SiO2).Secondary crystallization phases are anorthite(CaAl2Si2O8),wollastonite minerals(WOLLA)and pyroxene minerals(cPyrA).Meanwhile,the principal crystallization phases of the samples are different types and have different contents,and the microstructures of the sample sections are different due to the difference between MgO/Al2O3 ratio.