Titanium has found extensive use in various engineering applications due to its attractive physical,mechanical, and chemical characteristics. However, titanium has relatively low hardness for use as an armour material...Titanium has found extensive use in various engineering applications due to its attractive physical,mechanical, and chemical characteristics. However, titanium has relatively low hardness for use as an armour material. ZrB2 was incorporated to the Ti matrix to form a Ti-based binary composites. In this study, powder metallurgy techniques were employed to disperse the ceramic particulates throughout the matrix material then consolidated through spark plasma sintering. The composites were densified at1300 ℃, pressure of 50 MPa, and holding time of 5 min. The microstructure and phase analysis of the sintered composites was carried out using SEM and XRD, while the hardness was determined using Vickers' microhardness tester. The SEM and XRD results confirmed the presence of the TiB whiskers which renowned with the improving the hardness of titanium. The hardness of the composite with 10 wt% ZrB_2 showed the highest hardness compared to that obtained for the 5 and 15 wt% ZrB_2 composites which was 495 and 571 Hv respectively.展开更多
采用粉末冶金模压烧结制备了Ti-15Mo/HA生物复合材料,研究了羟基磷灰石(HA)对复合材料的微观结构、显微硬度及摩擦磨损性能的影响。结果表明,随着HA含量的增加,Ti-15Mo/HA复合材料中的α-Ti增加、β-Ti减少,同时有多种陶瓷相(CaTiO_(3)...采用粉末冶金模压烧结制备了Ti-15Mo/HA生物复合材料,研究了羟基磷灰石(HA)对复合材料的微观结构、显微硬度及摩擦磨损性能的影响。结果表明,随着HA含量的增加,Ti-15Mo/HA复合材料中的α-Ti增加、β-Ti减少,同时有多种陶瓷相(CaTiO_(3)、Ca_(3)(PO_(4))_(2)、CaO等)生成。加入HA生成的多种硬质陶瓷相使得Ti-15Mo/HA复合材料的维氏硬度提高。由于Mo在Ti中的固溶强化和陶瓷相的弥散强化,以及液体的润滑作用,Ti-15Mo/HA复合材料在模拟体液(simulated body fluid,SBF)环境下的摩擦因数和磨损率较低。Ti-15Mo/5HA比其他复合材料具有更好的耐磨性能,其平均摩擦因数为0.42,磨损率约为2.51×10^(-4)mm^(3)/(N·m)。Ti-15Mo合金是黏着磨损和磨粒磨损共同作用,而Ti-15Mo/HA复合材料以磨粒磨损为主,黏着磨损为辅。粉末冶金制备的Ti-15Mo/5HA复合材料显示了良好的耐磨性能,在硬组织替代和修复材料领域具有潜在的应用前景。展开更多
基金supported financially by the National Research Foundationthe support from the the Tshwane University of Technology, Pretoria, South Africa which helped to accomplish this work
文摘Titanium has found extensive use in various engineering applications due to its attractive physical,mechanical, and chemical characteristics. However, titanium has relatively low hardness for use as an armour material. ZrB2 was incorporated to the Ti matrix to form a Ti-based binary composites. In this study, powder metallurgy techniques were employed to disperse the ceramic particulates throughout the matrix material then consolidated through spark plasma sintering. The composites were densified at1300 ℃, pressure of 50 MPa, and holding time of 5 min. The microstructure and phase analysis of the sintered composites was carried out using SEM and XRD, while the hardness was determined using Vickers' microhardness tester. The SEM and XRD results confirmed the presence of the TiB whiskers which renowned with the improving the hardness of titanium. The hardness of the composite with 10 wt% ZrB_2 showed the highest hardness compared to that obtained for the 5 and 15 wt% ZrB_2 composites which was 495 and 571 Hv respectively.
文摘采用粉末冶金模压烧结制备了Ti-15Mo/HA生物复合材料,研究了羟基磷灰石(HA)对复合材料的微观结构、显微硬度及摩擦磨损性能的影响。结果表明,随着HA含量的增加,Ti-15Mo/HA复合材料中的α-Ti增加、β-Ti减少,同时有多种陶瓷相(CaTiO_(3)、Ca_(3)(PO_(4))_(2)、CaO等)生成。加入HA生成的多种硬质陶瓷相使得Ti-15Mo/HA复合材料的维氏硬度提高。由于Mo在Ti中的固溶强化和陶瓷相的弥散强化,以及液体的润滑作用,Ti-15Mo/HA复合材料在模拟体液(simulated body fluid,SBF)环境下的摩擦因数和磨损率较低。Ti-15Mo/5HA比其他复合材料具有更好的耐磨性能,其平均摩擦因数为0.42,磨损率约为2.51×10^(-4)mm^(3)/(N·m)。Ti-15Mo合金是黏着磨损和磨粒磨损共同作用,而Ti-15Mo/HA复合材料以磨粒磨损为主,黏着磨损为辅。粉末冶金制备的Ti-15Mo/5HA复合材料显示了良好的耐磨性能,在硬组织替代和修复材料领域具有潜在的应用前景。