Understanding the photon number statistics of a quantum emitter(QE)interacting with complex photonic environments is fundamental to advances in quantum optics and nanophotonics.We introduce a general theoretical frame...Understanding the photon number statistics of a quantum emitter(QE)interacting with complex photonic environments is fundamental to advances in quantum optics and nanophotonics.We introduce a general theoretical framework for calculating the modal photon number density spectrum(MPNDS)in arbitrary dielectric structures with an embedded two-level QE.We validate our approach by investigating a system composed of a two-level QE and a photonic crystal(PhC)slab with an L3 cavity and a waveguide,finding that the MPNDS exhibits significant changes in both waveguide and background radiative channels as the interaction between the QE and modal field transitions from weak coupling to strong coupling.We observe that the number of photons guided along the waveguide shows a strong dependence on the QE’s transition frequency and transition dipole moment,but demonstrates robustness to the transition dipole moment when the transition frequency approaches the waveguide cutoff frequency.Our work allows for the determination and tailoring of light emission characteristics across diverse radiative channels in complex photonic environments.展开更多
In this paper,we propose a joint power and frequency allocation algorithm considering interference protection in the integrated satellite and terrestrial network(ISTN).We efficiently utilize spectrum resources by allo...In this paper,we propose a joint power and frequency allocation algorithm considering interference protection in the integrated satellite and terrestrial network(ISTN).We efficiently utilize spectrum resources by allowing user equipment(UE)of terrestrial networks to share frequencies with satellite networks.In order to protect the satellite terminal(ST),the base station(BS)needs to control the transmit power and frequency resources of the UE.The optimization problem involves maximizing the achievable throughput while satisfying the interference protection constraints of the ST and the quality of service(QoS)of the UE.However,this problem is highly nonconvex,and we decompose it into power allocation and frequency resource scheduling subproblems.In the power allocation subproblem,we propose a power allocation algorithm based on interference probability(PAIP)to address channel uncertainty.We obtain the suboptimal power allocation solution through iterative optimization.In the frequency resource scheduling subproblem,we develop a heuristic algorithm to handle the non-convexity of the problem.The simulation results show that the combination of power allocation and frequency resource scheduling algorithms can improve spectrum utilization.展开更多
Understanding the physical features of the flow noise for an axisymmetric body is important for improving the performance of a sonar mounted on an underwater platform. Analytical calculation and numerical analysis of ...Understanding the physical features of the flow noise for an axisymmetric body is important for improving the performance of a sonar mounted on an underwater platform. Analytical calculation and numerical analysis of the physical features of the flow noise for an axisymmetric body are presented and a simulation scheme for the noise correlation on the hydrophones is given. It is shown that the numerical values of the flow noise coincide well with the analytical values. The main physical features of flow noise are obtained. The flow noises of two different models are compared and a model with a rather optimal fore-body shape is given. The flow noise in horizontal symmetry profile of the axisymmetric body is non-uniform, but it is omni-directional and has little difference in the cross section of the body. The loss of noise diffraction has a great effect on the flow noise from boundary layer transition. Meanwhile, based on the simulation, the noise power level increases with velocity to approximately the fifth power at high frequencies, which is consistent with the experiment data reported in the literature. Furthermore, the flow noise received by the acoustic array has lower correlation at a designed central frequency, which is important for sonar system design.展开更多
In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards...In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards,i.e.,IEEE 802.11 Series,GSM,LTE,LTE-A,etc.This new multiple primary transmit power(MPTP) scenario is specialized by two different targets:detecting the presence of PU and identifying the power level.Compared to the traditional binary sensing where only the presence of PU is checked,SU may attain more information about the primary network(making CR more "intelligent") and design the subsequent optimization strategy.The key technology is the multiple hypothesis testing as opposed to the traditional binary hypothesis testing.We discuss two situations under whether the channel phase is known or not,and we derive the closed form solutions for decision regions and several performance metrics,from which some interesting phenomenons are observed and the related discussions are presented.Numerical examples are provided to corroborate the proposed studies.展开更多
Based on the measurement of one-dimensional (1D) optical path difference (OPD) of the supersonic turbulent bound- ary layer, an analytical form for the power spectrum of the two-dimensional (2D) OPD is obtained ...Based on the measurement of one-dimensional (1D) optical path difference (OPD) of the supersonic turbulent bound- ary layer, an analytical form for the power spectrum of the two-dimensional (2D) OPD is obtained with its structure function and under the locally homogeneous isotropic assumption. The universality of this spectrum is argued, and its validity is checked by the comparison with experimental result. The potential applications of this model in theoretical and numerical studies are emphasized. Another contribution of this work is around the application of correlation function to analyzing the statistics of OPD. Based on our results and other results published elsewhere, we show that the OPD is often not stationary, and one should be cautious about using this tool.展开更多
We consider a spectrum efficiency(SE)maximization problem for cooperative power beacon-enabled wireless powered communication networks(CPB-WPCNs),where each transmitter harvests en-ergy from multi-antenna power beacon...We consider a spectrum efficiency(SE)maximization problem for cooperative power beacon-enabled wireless powered communication networks(CPB-WPCNs),where each transmitter harvests en-ergy from multi-antenna power beacons(PBs)and transmits data to the corresponding receiver.For data transmission,both orthogonal transmission,i.e.,the time splitting(TS)mode,and non-orthogonal trans-mission,i.e.,the interference channel(IC)mode,are considered.Aiming to improve the system SE,the energy beamformers of PBs,the transmit power,and the transmit time duration of transmitters are jointly optimized.For the TS mode,the original non-convex problem is transformed into a convex opti-mization problem by means of variable substitution and semidefinite relaxation(SDR).The rank-one na-ture of this SDR is proved,and then a Lagrange-dual based fast algorithm is proposed to obtain the opti-mal solution with much lower complexity.For the IC mode,to conquer the strong non-convexity of the problem,a branch-reduce-and-bound(BRB)mono-tonic optimization algorithm is designed as a bench-mark.Furthermore,a low-complexity distributed suc-cessive convex approximation(SCA)algorithm is pre-sented.Finally,simulation results validate the perfor-mance of the proposed algorithms,achieving optimal-ity within only 1%∼2%computation time compared to the CVX solver in the TS mode and achieving 98%of the optimal performance in the IC mode.展开更多
Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed pos...Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density(PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method(PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform,the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman–Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty,and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.展开更多
Local field potential(LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation(FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch...Local field potential(LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation(FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases.展开更多
Spectrum access approach and power allocation scheme are important techniques in cognitive radio(CR) system,which not only affect communication performance of CR user(secondary user,SU) but also play decisive role for...Spectrum access approach and power allocation scheme are important techniques in cognitive radio(CR) system,which not only affect communication performance of CR user(secondary user,SU) but also play decisive role for protection of primary user(PU).In this study,we propose a power allocation scheme for SU based on the status sensing of PU in a single-input single-output(SISO) CR network.Instead of the conventional binary primary transmit power strategy,namely the sensed PU has only present or absent status,we consider a more practical scenario when PU transmits with multiple levels of power and quantized side information known by SU in advance as a primary quantized codebook.The secondary power allocation scheme to maximize the average throughput under the rate loss constraint(RLC) of PU is parameterized by the sensing results for PU,the primary quantized codebook and the channel state information(CSI) of SU.Furthermore,Differential Evolution(DE) algorithm is used to solve this non-convex power allocation problem.Simulation results show the performance and effectiveness of our proposed scheme under more practical communication conditions.展开更多
Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing an...Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.展开更多
In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user syste...In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.展开更多
The neutron energy spectrum was measured using a Bonner sphere spectrometer at six locations inside the containment vessel of a nuclear reactor at the Qinshan nuclear power plant. The structures of the neutron spectra...The neutron energy spectrum was measured using a Bonner sphere spectrometer at six locations inside the containment vessel of a nuclear reactor at the Qinshan nuclear power plant. The structures of the neutron spectra obtained by the maximum entropy, iteration, and genetic algorithm methods were consistent with one another and could be interpreted as the spectral superposition of different energy regions. The characteristic parameters of the neutron spectrum, including the fluence rate,average energy, and neutron ambient dose equivalent rate H^(*)(10), were in good agreement among the three methods. In addition, an LB6411 neutron ambient dose equivalent meter was employed to obtain the H^(*)(10) directly for comparison.These findings indicate that neutron spectrum unfolding methods can be used to overcome the problems associated with the response functions of dosimeters to provide more accurate H^(*)(10) values. In this study, the following three evaluation criteria were systematically addressed to ensure the accuracy of the unfolded spectra: count rates of the inverse solutions,neutron spectrum structures, and comparison of key parameters.展开更多
基金Project supported by the Basic and Applied Basic Research Project,Guangzhou Basic Research Plan(Grant No.202201011444).
文摘Understanding the photon number statistics of a quantum emitter(QE)interacting with complex photonic environments is fundamental to advances in quantum optics and nanophotonics.We introduce a general theoretical framework for calculating the modal photon number density spectrum(MPNDS)in arbitrary dielectric structures with an embedded two-level QE.We validate our approach by investigating a system composed of a two-level QE and a photonic crystal(PhC)slab with an L3 cavity and a waveguide,finding that the MPNDS exhibits significant changes in both waveguide and background radiative channels as the interaction between the QE and modal field transitions from weak coupling to strong coupling.We observe that the number of photons guided along the waveguide shows a strong dependence on the QE’s transition frequency and transition dipole moment,but demonstrates robustness to the transition dipole moment when the transition frequency approaches the waveguide cutoff frequency.Our work allows for the determination and tailoring of light emission characteristics across diverse radiative channels in complex photonic environments.
基金funded by State Key Laboratory of Micro-Spacecraft Rapid Design and Intelligent Cluster under Grant MS01240103the National Natural Science Foundation of China under Grant 62071146National 2011 Collaborative Innovation Center of Wireless Communication Technologies under Grant 2242022k60006.
文摘In this paper,we propose a joint power and frequency allocation algorithm considering interference protection in the integrated satellite and terrestrial network(ISTN).We efficiently utilize spectrum resources by allowing user equipment(UE)of terrestrial networks to share frequencies with satellite networks.In order to protect the satellite terminal(ST),the base station(BS)needs to control the transmit power and frequency resources of the UE.The optimization problem involves maximizing the achievable throughput while satisfying the interference protection constraints of the ST and the quality of service(QoS)of the UE.However,this problem is highly nonconvex,and we decompose it into power allocation and frequency resource scheduling subproblems.In the power allocation subproblem,we propose a power allocation algorithm based on interference probability(PAIP)to address channel uncertainty.We obtain the suboptimal power allocation solution through iterative optimization.In the frequency resource scheduling subproblem,we develop a heuristic algorithm to handle the non-convexity of the problem.The simulation results show that the combination of power allocation and frequency resource scheduling algorithms can improve spectrum utilization.
基金Project supported by the National Natural Science Foundational of China (Grant No. 10774119)the Program for New Century Excellent Talents in University, China (Grant No. NCET-08-0455)+1 种基金the Natural Science Foundation of Shaanxi Province of China (Grant No. SJ08F07)the Foundation of National Laboratory of Acoustic and the Foundation for Fundamental Research of Northwestern Polytechnic University, China (Grant No. 2007004)
文摘Understanding the physical features of the flow noise for an axisymmetric body is important for improving the performance of a sonar mounted on an underwater platform. Analytical calculation and numerical analysis of the physical features of the flow noise for an axisymmetric body are presented and a simulation scheme for the noise correlation on the hydrophones is given. It is shown that the numerical values of the flow noise coincide well with the analytical values. The main physical features of flow noise are obtained. The flow noises of two different models are compared and a model with a rather optimal fore-body shape is given. The flow noise in horizontal symmetry profile of the axisymmetric body is non-uniform, but it is omni-directional and has little difference in the cross section of the body. The loss of noise diffraction has a great effect on the flow noise from boundary layer transition. Meanwhile, based on the simulation, the noise power level increases with velocity to approximately the fifth power at high frequencies, which is consistent with the experiment data reported in the literature. Furthermore, the flow noise received by the acoustic array has lower correlation at a designed central frequency, which is important for sonar system design.
基金supported in part by the National Basic Research Program of China(973 Program)under Grant 2013CB336600the Beijing Natural Science Foundation under Grant 4131003+1 种基金the National Natural Science Foundation of China under Grant{61201187,61422109}the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions under Grant YETP0110
文摘In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards,i.e.,IEEE 802.11 Series,GSM,LTE,LTE-A,etc.This new multiple primary transmit power(MPTP) scenario is specialized by two different targets:detecting the presence of PU and identifying the power level.Compared to the traditional binary sensing where only the presence of PU is checked,SU may attain more information about the primary network(making CR more "intelligent") and design the subsequent optimization strategy.The key technology is the multiple hypothesis testing as opposed to the traditional binary hypothesis testing.We discuss two situations under whether the channel phase is known or not,and we derive the closed form solutions for decision regions and several performance metrics,from which some interesting phenomenons are observed and the related discussions are presented.Numerical examples are provided to corroborate the proposed studies.
基金Project supported by the National Natural Science Foundation of China(Grant No.61008037)the National Basic Research Program of China(Grant No.2009CB724100)
文摘Based on the measurement of one-dimensional (1D) optical path difference (OPD) of the supersonic turbulent bound- ary layer, an analytical form for the power spectrum of the two-dimensional (2D) OPD is obtained with its structure function and under the locally homogeneous isotropic assumption. The universality of this spectrum is argued, and its validity is checked by the comparison with experimental result. The potential applications of this model in theoretical and numerical studies are emphasized. Another contribution of this work is around the application of correlation function to analyzing the statistics of OPD. Based on our results and other results published elsewhere, we show that the OPD is often not stationary, and one should be cautious about using this tool.
基金National Natural Science Foundation of China(61771066,61629101).
文摘We consider a spectrum efficiency(SE)maximization problem for cooperative power beacon-enabled wireless powered communication networks(CPB-WPCNs),where each transmitter harvests en-ergy from multi-antenna power beacons(PBs)and transmits data to the corresponding receiver.For data transmission,both orthogonal transmission,i.e.,the time splitting(TS)mode,and non-orthogonal trans-mission,i.e.,the interference channel(IC)mode,are considered.Aiming to improve the system SE,the energy beamformers of PBs,the transmit power,and the transmit time duration of transmitters are jointly optimized.For the TS mode,the original non-convex problem is transformed into a convex opti-mization problem by means of variable substitution and semidefinite relaxation(SDR).The rank-one na-ture of this SDR is proved,and then a Lagrange-dual based fast algorithm is proposed to obtain the opti-mal solution with much lower complexity.For the IC mode,to conquer the strong non-convexity of the problem,a branch-reduce-and-bound(BRB)mono-tonic optimization algorithm is designed as a bench-mark.Furthermore,a low-complexity distributed suc-cessive convex approximation(SCA)algorithm is pre-sented.Finally,simulation results validate the perfor-mance of the proposed algorithms,achieving optimal-ity within only 1%∼2%computation time compared to the CVX solver in the TS mode and achieving 98%of the optimal performance in the IC mode.
基金Project supported by the National Natural Science Foundation of China(Grant No.61301179)the Doctorial Program Foundation of the Ministry of Education,China(Grant No.20110203110011)the 111 Project,China(Grant No.B08038)
文摘Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density(PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method(PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform,the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman–Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty,and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.
基金supported by the National Natural Science Foundation of China(Grant No.61273063)China Postdoctoral Science Foundation(Grant No.2013M540215)the Natural Science Foundation of Hebei Province,China(Grant No.F2014203161)
文摘Local field potential(LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation(FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases.
基金supported by the National Natural Science Foundation of China(Grant No.61571209)
文摘Spectrum access approach and power allocation scheme are important techniques in cognitive radio(CR) system,which not only affect communication performance of CR user(secondary user,SU) but also play decisive role for protection of primary user(PU).In this study,we propose a power allocation scheme for SU based on the status sensing of PU in a single-input single-output(SISO) CR network.Instead of the conventional binary primary transmit power strategy,namely the sensed PU has only present or absent status,we consider a more practical scenario when PU transmits with multiple levels of power and quantized side information known by SU in advance as a primary quantized codebook.The secondary power allocation scheme to maximize the average throughput under the rate loss constraint(RLC) of PU is parameterized by the sensing results for PU,the primary quantized codebook and the channel state information(CSI) of SU.Furthermore,Differential Evolution(DE) algorithm is used to solve this non-convex power allocation problem.Simulation results show the performance and effectiveness of our proposed scheme under more practical communication conditions.
基金supported by the National Key R&D Program of China(2020YFB1807801,2020YFB1807800)in part by Project Supported by Engineering Research Center of Mobile Communications,Ministry of Education(cqupt-mct-202003)+2 种基金in part by Key Lab of Information Network Security,Ministry of Public Security under Grant C19603in part by National Natural Science Foundation of China(Grant No.61901067 and 61901013)in part by Chongqing Municipal Natural Science Foundation(Grant No.cstc2020jcyj-msxmX0339).
文摘Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.
基金supported in part by the National Natural Science Foundation of China for Young Scholars under Grant No.61701167Young Elite Backbone Teachers in Blue and Blue Project of Jiangsu Province, China
文摘In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.
基金supported by the Fundamental Research Funds of the National Institute of Metrology,China(No.AKYZZ2113)National Key Research and Development Program of China(No.2017YFF0206205).
文摘The neutron energy spectrum was measured using a Bonner sphere spectrometer at six locations inside the containment vessel of a nuclear reactor at the Qinshan nuclear power plant. The structures of the neutron spectra obtained by the maximum entropy, iteration, and genetic algorithm methods were consistent with one another and could be interpreted as the spectral superposition of different energy regions. The characteristic parameters of the neutron spectrum, including the fluence rate,average energy, and neutron ambient dose equivalent rate H^(*)(10), were in good agreement among the three methods. In addition, an LB6411 neutron ambient dose equivalent meter was employed to obtain the H^(*)(10) directly for comparison.These findings indicate that neutron spectrum unfolding methods can be used to overcome the problems associated with the response functions of dosimeters to provide more accurate H^(*)(10) values. In this study, the following three evaluation criteria were systematically addressed to ensure the accuracy of the unfolded spectra: count rates of the inverse solutions,neutron spectrum structures, and comparison of key parameters.