期刊文献+
共找到1,102篇文章
< 1 2 56 >
每页显示 20 50 100
Detection of geohazards caused by human disturbance activities based on convolutional neural networks
1
作者 ZHANG Heng ZHANG Diandian +1 位作者 YUAN Da LIU Tao 《水利水电技术(中英文)》 北大核心 2025年第S1期731-738,共8页
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir... Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed. 展开更多
关键词 convolutional neural network detection environment damage CLIFF LANDSLIDE
在线阅读 下载PDF
A novel detection method for warhead fragment targets in optical images under dynamic strong interference environments
2
作者 Guoyi Zhang Hongxiang Zhang +4 位作者 Zhihua Shen Deren Kong Chenhao Ning Fei Shang Xiaohu Zhang 《Defence Technology(防务技术)》 2025年第1期252-270,共19页
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,... A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing. 展开更多
关键词 damage parameter testing Warhead fragment target detection High-speed imaging systems Dynamic strong interference disturbance suppression Variational bayesian inference Motion target detection Faint streak-like target detection
在线阅读 下载PDF
Optimal mother wavelet-based Lamb wave analyses and damage detection for composite structures 被引量:2
3
作者 Li Fucai Meng Guang Ye Lin 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第10期1729-1735,共7页
With the purpose of on-line structural health monitoring,a transducer network was embedded into compos- ite structure to minimize the influence of surroundings.The intrinsic dispersion characteristic of Lamb wave make... With the purpose of on-line structural health monitoring,a transducer network was embedded into compos- ite structure to minimize the influence of surroundings.The intrinsic dispersion characteristic of Lamb wave makes the wavelet transform an effective signal processing method for guided waves.To get high precision in feature extrac- tion,an information entropy-based optimal mother wavelet selection approach was proposed,which was used to choose the most appropriate basis function for particular Lamb wave analysis.By using the embedded sensor network and extracting time-of-flight,delamination in the composite laminate was identified and located.The results demon- strate the effectiveness of the proposed methods. 展开更多
关键词 拉姆波 损失探测 内传感器 信息熵 最优小波基
在线阅读 下载PDF
Fault detection and optimization for networked control systems with uncertain time-varying delay 被引量:2
4
作者 Qing Wang Zhaolei Wang +1 位作者 Chaoyang Dong Erzhuo Niu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期544-556,共13页
The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are model... The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are modeled as parameter-uncertain systems by the matrix theory. Based on the model, an observer-based residual generator is constructed and the sufficient condition for the existence of the desired fault detection filter is derived in terms of the linear matrix inequality. Furthermore, a time domain opti- mization approach is proposed to improve the performance of the fault detection system. To prevent the false alarms, a new thresh- old function is established, and the solution of the optimization problem is given by using the singular value decomposition (SVD) of the matrix. A numerical example is provided to illustrate the effectiveness of the proposed approach. 展开更多
关键词 fault detection networked control systems residual generator time-varying delay time domain optimization approach.
在线阅读 下载PDF
Fault detection filter design for linear discrete time-varying systems with multiplicative noise 被引量:2
5
作者 Yueyang Li Maiying Zhong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第6期982-990,共9页
The problem of fault detection for linear discrete timevarying systems with multiplicative noise is dealt with.By using an observer-based robust fault detection filter(FDF) as a residual generator,the design of the ... The problem of fault detection for linear discrete timevarying systems with multiplicative noise is dealt with.By using an observer-based robust fault detection filter(FDF) as a residual generator,the design of the FDF is formulated in the framework of H ∞ filtering for a class of stochastic time-varying systems.A sufficient condition for the existence of the FDF is derived in terms of a Riccati equation.The determination of the parameter matrices of the filter is converted into a quadratic optimization problem,and an analytical solution of the parameter matrices is obtained by solving the Riccati equation.Numerical examples are given to illustrate the effectiveness of the proposed method. 展开更多
关键词 fault detection filter(FDF) linear discrete time-varying(LDTV) system multiplicative noise Riccati equation.
在线阅读 下载PDF
H_-/H_∞ fault detection filter design for interval time-varying delays switched systems 被引量:3
6
作者 Jiawei Wang Yi Shen Zhenhua Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期878-886,共9页
The problem of the robust fault detection filter design for time-varying delays switched systems is considered in the framework of mixed H-/H∞. Firstly, the weighted H∞ performance index is utilized as the robustnes... The problem of the robust fault detection filter design for time-varying delays switched systems is considered in the framework of mixed H-/H∞. Firstly, the weighted H∞ performance index is utilized as the robustness performance, and the H- index is used as the sensitivity performance for obtaining the robust fault detection filter. Then a novel multiple Lyapunov-Krasovskii function is proposed for deriving sufficient existence conditions of the robust fault detection filter based on the average dwell time technique. By introducing slack matrix variable, the coupling between the Lyapunov matrix and system matrix is removed, and the conservatism of results is reduced. Based on the robust fault detection filter, residual is generated and evaluated for detecting faults. In addition, the results of this paper are dependent on time delays,and represented in the form of linear matrix inequalities. Finally,the simulation example verifies the effectiveness of the proposed method. 展开更多
关键词 switched system average dwell time mixed H-/H∞ robust fault detection filter time-varying delay
在线阅读 下载PDF
Scheme of optimal fault detection for linear discrete time-varying systems with delayed state
7
作者 Maiying Zhong Jie Chen Yue Geng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期979-985,共7页
This paper deals with the problem of the optimal fault detection (FD) for linear discrete time-varying (LDTV) systems with delayed state and l(2)-norm bounded unknown input. The novelty lies in the designing of an eva... This paper deals with the problem of the optimal fault detection (FD) for linear discrete time-varying (LDTV) systems with delayed state and l(2)-norm bounded unknown input. The novelty lies in the designing of an evaluation function for the robust FD. The basic idea is to directly construct an evaluation function by using a weighted l(2)-norm of the measurement output, which achieves an optimal trade-off between the sensitivity to fault and the robustness to l(2)-norm bounded unknown input. To avoid complex computation, a feasible solution is obtained via the recursive computation by applying the orthogonal projection. It is shown that such an evaluation function provides a unified scheme for both the cases of unknown input being l(2)-norm bounded and jointly normal distribution, while a threshold may be chosen based on a priori knowledge of unknown input. A numerical example is given to demonstrate the effectiveness of the proposed method. 展开更多
关键词 fault detection evaluation function linear discrete time-varying system TIME-DELAY
在线阅读 下载PDF
Experimental investigation of subsurface damage depth of lapped optics by fluorescent method 被引量:5
8
作者 WANG Hong-xiang HOU Jing +2 位作者 WANG Jing-he ZHU Ben-wen ZHANG Yan-hu 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1678-1689,共12页
Subsurface defects were fluorescently tagged with nanoscale quantum dots and scanned layer by layer using confocal fluorescence microscopy to obtain images at various depths. Subsurface damage depths of fused silica o... Subsurface defects were fluorescently tagged with nanoscale quantum dots and scanned layer by layer using confocal fluorescence microscopy to obtain images at various depths. Subsurface damage depths of fused silica optics were characterized quantitatively by changes in the fluorescence intensity of feature points. The fluorescence intensity vs scan depth revealed that the maximum fluorescence intensity decreases sharply when the scan depth exceeds a critical value. The subsurface damage depth could be determined by the actual embedded depth of the quantum dots. Taper polishing and magnetorheological finishing were performed under the same conditions to verify the effectiveness of the nondestructive fluorescence method. The results indicated that the quantum dots effectively tagged subsurface defects of fused-silica optics, and that the nondestructive detection method could effectively evaluate subsurface damage depths. 展开更多
关键词 OPTICS subsurface defect nondestructive detection LAPPING subsurface damage
在线阅读 下载PDF
H_∞-based fault detection for nonlinear networked systems with random packet dropout and probabilistic interval delay 被引量:3
9
作者 Yong Zhang Huajing Fang Zhen Luo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第5期825-831,共7页
The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet d... The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet dropout and network- induced non-uniformly distributed time-varying delay in both from sensor to controller (S/C) and from controller to actuator (C/A). Based on the obtained NCS model, employing an observer-based fault detection filter as the residual generator, the addressed fault detection problem is converted into an auxiliary nonlinear H∞ control problem. Then, with the help of Lyapunov functional approach, a sufficient condition for the desired fault detection filter is constructed in terms of certain linear matrix inequalities, which depend on not only the delay interval but also the delay interval occurrence rate and successful packet communication rate. Especially, a trade-off phenomenon between the maximum allowable delay bound and successful data packet transmission rate is found, which is typically resulted from the limited bandwidth of communication networks. The effectiveness of the proposed method is demonstrated by a simulation example. 展开更多
关键词 networked control system (NCS) fault detection (FD) time-varying delay random packet dropout linear matrix inequality (LMI).
在线阅读 下载PDF
改进Faster-R-CNN的输送带表面损伤检测 被引量:2
10
作者 袁媛 赵鹏举 +1 位作者 孟文俊 王航 《机械设计与制造》 北大核心 2025年第3期199-203,共5页
针对输送带在长期运转过程中易出现划伤、撕裂和破裂的损伤问题,提出了一种改进Faster-R-CNN的输送带表面损伤检测方法。该检测方法在Faster-R-CNN神经网络的基础上,首选MobileNet网络进行图像轻量化特征提取,然后在RPN模块中引入ancho... 针对输送带在长期运转过程中易出现划伤、撕裂和破裂的损伤问题,提出了一种改进Faster-R-CNN的输送带表面损伤检测方法。该检测方法在Faster-R-CNN神经网络的基础上,首选MobileNet网络进行图像轻量化特征提取,然后在RPN模块中引入anchor原始特征与卷积相融合的背景分类,以加强输送带的损伤特征信息;最后构建输送带表面损伤的数据集进行数据试验,并分别采用VGG-19,ResNet-18骨干网络进行试验对比,结果表明改进的Faster-R-CNN的算法,针对输送带划伤、撕裂和破损的损伤状态均能够有效识别。 展开更多
关键词 输送带 损伤检测 Faster-R-CNN MobileNet
在线阅读 下载PDF
基于Mask R⁃CNN的多类建筑物损伤识别方法 被引量:1
11
作者 杨敬松 王煜鑫 +2 位作者 李智涛 卢泽葳 彭福民 《防灾减灾工程学报》 北大核心 2025年第3期562-570,共9页
地震发生后快速对建筑物损伤进行识别,可以提高灾害损失评估的效率,并为救援提供有效地决策支持。针对因背景干扰带来的重要特征表达能力弱的问题,提出一种基于深度学习框架Mask R‑CNN的多建筑物损伤识别方法。首先,对样本图像进行预处... 地震发生后快速对建筑物损伤进行识别,可以提高灾害损失评估的效率,并为救援提供有效地决策支持。针对因背景干扰带来的重要特征表达能力弱的问题,提出一种基于深度学习框架Mask R‑CNN的多建筑物损伤识别方法。首先,对样本图像进行预处理,克服复杂环境背景因素干扰,并进行多途径扩增,得到用于深度学习的扩增样本数据集。其次,优化特征提取网络,采用嵌入注意力机制模块SE的MobileNetv3网络作为主干网络,增加模型对建筑物损伤空间及语义信息的提取,有效避免背景对模型性能的影响,改进损失函数,避免遗漏类别和类别错分现象,同时引入迁移学习,降低训练成本;最后,采用定性分析和定量评估相结合的手段,多维度评估模型泛化能力和鲁棒性。改进后的Mask R‑CNN模型的平均精度达到了84.34%,相对于原始的Mask R‑CNN模型,精度提高了9.12%。结果表明,改进后的模型在识别含有多种损伤特征和噪声背景的建筑物损伤图像方面表现良好,可以为地震后建筑物的损伤评估提供有效地技术支持。 展开更多
关键词 人工智能 建筑物损伤识别 Mask R‑CNN 实例分割
在线阅读 下载PDF
吸氘钛膜表面损伤缺陷检测研究进展
12
作者 董兰 潘嶙 +1 位作者 王红侠 彭述明 《核电子学与探测技术》 北大核心 2025年第1期61-71,共11页
本文通过了解钛膜吸氘的反应机理、动力学与热力学研究现状,归纳了几种典型的氘化钛表面缺陷类型,综述了目前检测钛及类似金属缺陷的检测技术。包括传统表面缺陷检测、电涡流检测、超声检测、机器视觉成像检测技术等。通过调研发现,缺... 本文通过了解钛膜吸氘的反应机理、动力学与热力学研究现状,归纳了几种典型的氘化钛表面缺陷类型,综述了目前检测钛及类似金属缺陷的检测技术。包括传统表面缺陷检测、电涡流检测、超声检测、机器视觉成像检测技术等。通过调研发现,缺陷检测技术正由单一缺陷检测向综合自动化检测技术发展。采用多种检测技术相结合的思路,可以助力实现氘化钛表面缺陷检测精准、高效、智能的检测需求。 展开更多
关键词 氘化钛 表面损伤 缺陷检测
在线阅读 下载PDF
深水水下生产系统损伤监测及预警技术现状与发展趋势 被引量:1
13
作者 张来斌 武胜男 林蓉 《中国石油大学学报(自然科学版)》 北大核心 2025年第2期1-15,共15页
在全球能源结构转型与能源安全的双重压力下,深水油气资源凭借其丰富的储量和巨大的开发潜力已成为全球能源战略的核心焦点。在复杂的海洋环境和严苛的技术条件下各国通过创新和实践不断推动浅水向深水油气开发的跨越,取得了显著成效。... 在全球能源结构转型与能源安全的双重压力下,深水油气资源凭借其丰富的储量和巨大的开发潜力已成为全球能源战略的核心焦点。在复杂的海洋环境和严苛的技术条件下各国通过创新和实践不断推动浅水向深水油气开发的跨越,取得了显著成效。作为深水开发的关键设施,水下生产系统的安全性直接关系到经济效益与生态保护;然而高压低温环境、强腐蚀性流体及动态载荷等复杂因素显著增加了系统损伤与泄漏的风险;现有监测与预警技术也面临着工况耦合、噪声干扰和精度不足等挑战。系统分析水下生产系统的潜在损伤模式和机制,综述水下油气开采泄漏监/检测、识别与预警技术的最新发展动态,提出在持续提升本质安全、增强高效风险防控与应急响应能力、推动智能化转型及健康管理等方面的研究建议,进一步促进深水水下生产系统智能监测与早期预警技术的发展,助力实现深水油气开采的安全、高效、智能与可控。 展开更多
关键词 水下生产系统 检测与监测技术 损伤分析技术 定位技术 预警技术
在线阅读 下载PDF
市政道路结构地下管线探测与力学特性数值模拟分析 被引量:1
14
作者 芮勇勤 袁健玮 +1 位作者 金生吉 许立 《沈阳工业大学学报》 北大核心 2025年第1期106-113,共8页
【目的】随着人口增长和城市化进程的加快,城区规模不断扩大,城市地下工程建设不可避免地与既有运行管线产生交互。地下管线具备给水、雨污水处理、化石能源运输、有线电视信号传输、电能输送等功能,担负着水、电、信息和能量的供给与传... 【目的】随着人口增长和城市化进程的加快,城区规模不断扩大,城市地下工程建设不可避免地与既有运行管线产生交互。地下管线具备给水、雨污水处理、化石能源运输、有线电视信号传输、电能输送等功能,担负着水、电、信息和能量的供给与传输,被称为城市的“神经”和“血管”,更是稳定城市运行的“生命线”。管线的渗漏、破裂甚至引发路面塌陷,不仅严重影响交通,还为城市排水系统埋下重大安全隐患。每年各地需投入大量人力物力用于地下管线的探测与维护。【方法】针对市政道路中地下管线分布、损伤及渗漏的普遍问题,基于探地雷达技术,提出了一种地下管线探测方案。通过探测不同种类管线的数据,结合原理分析、试验和数值模拟验证,研究管线渗漏引发路面沉陷的机理。【结果】该方案基于探地雷达的探测原理,通过图谱特征识别方法获取地下管线的分布、埋深、管径、材质、管线内部介质以及空洞等参数。结合伪彩色电平图、灰色电平图及波形堆积图等信号数据,建立有限元模型,并对管线渗漏特性进行综合分析,从而研究揭示了渗漏发展的趋势及其对道路结构的损伤机理。【结论】研究表明,道路损伤受多因素影响,包括路面车辆荷载、管道内部压力、管道埋深和直径等。通过探地雷达反射图像的逆向分析,结合路面的病害动力固结数值模拟,可评估管线运行状况及受力特征,从而优化管线布置点位和材质,强化管线上部结构设计,加强路基的防沉陷保护,避免工后路面沉降开裂。研究建议通过调整受力点位置、扩大受力面积和避免应力集中,预防路基结构与管线的破损。本文基于探测数据与数值模拟,对比不同种类管线的变形特性,总结管线渗漏的作用规律,为后续地下工程的定向开挖和城市道路灾害的排查提供指导。 展开更多
关键词 市政道路结构 地下管线 地质雷达 探测 道路损伤 渗漏机理 力学特性 数值模拟
在线阅读 下载PDF
轻量化古建筑青砖损伤检测方法研究
15
作者 王茹 林浩杰 +1 位作者 陈丽 黄炜 《安全与环境学报》 北大核心 2025年第2期518-526,共9页
传统的古建筑青砖损伤检测通常采用人工识别的方式,存在工作量巨大、成本高等问题。为了解决该问题,提出一种轻量化古建筑青砖损伤检测算法(Lightweight Grey Bricks Damage Detection,Light-GBDD),并采用改进的轻量化FasterNet_T0模块... 传统的古建筑青砖损伤检测通常采用人工识别的方式,存在工作量巨大、成本高等问题。为了解决该问题,提出一种轻量化古建筑青砖损伤检测算法(Lightweight Grey Bricks Damage Detection,Light-GBDD),并采用改进的轻量化FasterNet_T0模块构建特征提取网络,以通过更少的模型参数完成损伤图像特征的提取;提出渐进卷积核空间金字塔池化模块(Gradual Convolutional Kernel Spatial Pyramid Pooling,GKSPP),用于降低由于最深层连续大核池化造成的细节特征信息丢失;通过特征金字塔网络和路径聚合网络构建特征融合网络,并引入卷积注意力模块(Convolutional Block Attention Module,CBAM),加强不同层级特征之间的关联,进而提高算法模型的检测精度;对v8DetectHead进行轻量化改进,进一步减少算法模型的参数量。最终,通过试验对Light-GBDD算法进行验证,试验结果显示,Light-GBDD算法较YOLOv8n算法在检测精度提高1.1百分点的情况下,参数量减少了69.1%,计算量降低了64.2%,存储量减少了66.7%,中央处理器(Central Processing Unit,CPU)推理帧数提高了100.9%,能够在移动设备上流畅运行。Light-GBDD算法有效降低了模型部署推理对计算设备的配置要求,实现了在低性能移动终端设备上的部署和推理。 展开更多
关键词 安全工程 古建筑 青砖 损伤检测 深度学习 轻量化
在线阅读 下载PDF
GAE-YOLO:全局感知增强的输电线路外破隐患目标检测方法
16
作者 刘敏 陈明 +1 位作者 武明虎 叶永钢 《仪器仪表学报》 北大核心 2025年第2期267-278,共12页
超高压架空输电线路在电力系统中至关重要,但常面临建筑施工、山火等外力因素引发的事故。这不仅损害了国家经济,影响电网稳定性,还对电力工作人员的人身安全造成威胁。基于深度学习的目标检测方法为检测外破隐患提供了新方案,但现有方... 超高压架空输电线路在电力系统中至关重要,但常面临建筑施工、山火等外力因素引发的事故。这不仅损害了国家经济,影响电网稳定性,还对电力工作人员的人身安全造成威胁。基于深度学习的目标检测方法为检测外破隐患提供了新方案,但现有方法往往依赖局部邻域信息执行采样操作,限制了感知范围和表达能力。为解决这一问题,提出了一种基于YOLOv10的实时全局感知增强方法GAE-YOLO,旨在提高超高压架空输电线路外破隐患目标的检测精度。针对传统方法中局部感知的局限,设计了2个新的上下采样模块:全局感知下采样模块(GADM)和全局感知上采样模块(GAUM)。GADM通过学习特征图的全局空间信息生成全局感知权重,优化下采样过程的感知性能;GAUM则通过利用深层特征图的通道信息生成全局感知权重,动态增强采样点的隶属关系,有效突出目标边界。为验证GAE-YOLO的有效性,构建了一个针对超高压架空输电线路外破隐患的大规模数据集,并在该数据集上取得了93.05%的平均精度均值(mAP),相较于基线模型mAP提升了5.13%。实验结果表明,GAE-YOLO能够显著提高外破隐患目标的检测精度,具有重要的应用价值,为电网安全运行提供了新的技术支持。 展开更多
关键词 目标检测 全局感知 下采样 上采样 外破隐患 输电线路
在线阅读 下载PDF
Anchor-based的接触网棒式绝缘子定位及破损检测
17
作者 苟军年 张昕悦 杜愫愫 《铁道学报》 北大核心 2025年第5期39-46,共8页
及时检测出有破损缺陷的绝缘子是保证接触网稳定运行的重要任务。针对接触网中棒式绝缘子伞裙密集破损检测难度大、主流深度检测算法参数量多导致模型难以部署的问题,提出一种Anchor-based单阶段绝缘子定位及破损检测深度网络模型。该... 及时检测出有破损缺陷的绝缘子是保证接触网稳定运行的重要任务。针对接触网中棒式绝缘子伞裙密集破损检测难度大、主流深度检测算法参数量多导致模型难以部署的问题,提出一种Anchor-based单阶段绝缘子定位及破损检测深度网络模型。该网络继承了RetinaNet的底层结构思想,选用轻量化的RegNetX-800MF作为主干网络,并在其后加入可变形卷积,降低网络参数量的同时增强网络的特征提取能力;对特征金字塔的部分层加入新的激活函数,降低对模型结构的破坏;搭建ATSS检测网络头部,提升密集型目标的样本采样质量和模型的定位准确性。试验结果表明,所提方法的mAP_(50)、mAP分别为81.7%、54.8%,模型的复杂度、参数仅为47.65 GFLOPs、16.43×10~6。所提方法为铁路接触网绝缘子的自动化巡检及后续部署奠定了理论基础。 展开更多
关键词 绝缘子定位 破损检测 深度学习 视觉目标检测 轻量化
在线阅读 下载PDF
便携式丘陵山地轨道检测装置设计与试验分析
18
作者 吴伟斌 何兆铠 +4 位作者 张方任 郑泽锋 李俊霖 吕金洪 罗远强 《农机化研究》 北大核心 2025年第9期98-106,114,共10页
针对丘陵山地单轨轨道本体结构受高密度运营、高负荷载重和外界自然环境的作用导致腐蚀损伤、轨道变形、沉降等问题,设计了一种便携式单轨轨道检测装置以及时获取轨道信息并进行精准检修。该检测装置通过GPS传感器记录经纬度信息和多轴... 针对丘陵山地单轨轨道本体结构受高密度运营、高负荷载重和外界自然环境的作用导致腐蚀损伤、轨道变形、沉降等问题,设计了一种便携式单轨轨道检测装置以及时获取轨道信息并进行精准检修。该检测装置通过GPS传感器记录经纬度信息和多轴角度信息,对摄像头记录的画面进行目标检测从而实现轨道检测,最后将多种信息汇总实现地理信息交互。试验结果表明:检测装置对转弯半径检测的最低平均误差为3.68%;静态坡度检测的最大相对误差为4.55%,平均误差为2.53%;动态坡度检测的最大相对误差为-8.20%,平均误差为5.33%;采用YOLOv8-n模型对轨道表面缺陷进行检测,完成训练的模型m AP值为81.55%;地理位置信息可以准确地显示转弯半径、坡度和轨道表面损伤分析的结果。该检测装置可以较好地实现轨道转弯半径、坡度、损伤检测,可以应用于数字农业从而提升农业信息化水平,具有一定的应用前景。 展开更多
关键词 丘陵山地 轨道检测 单轨轨道 GPS 目标检测 损伤检测
在线阅读 下载PDF
基于DDE-BIT的无人机高速公路护栏损坏检测
19
作者 王洋 郭杜杜 帅洪波 《现代电子技术》 北大核心 2025年第4期123-129,共7页
针对现有方法对无人机高速公路护栏损坏检测存在边缘信息提取效果差、识别精度低的问题,提出一种基于深度学习的变化检测模型DDE-BIT。首先,采用深度可分离卷积优化主干网络Resnet18,减少模型的参数数量,降低计算成本;然后,在主干网络... 针对现有方法对无人机高速公路护栏损坏检测存在边缘信息提取效果差、识别精度低的问题,提出一种基于深度学习的变化检测模型DDE-BIT。首先,采用深度可分离卷积优化主干网络Resnet18,减少模型的参数数量,降低计算成本;然后,在主干网络输出部分引入ECA注意力模块,在仅增加少量参数的情况下提高模型的跨通道信息捕捉能力;最后,通过跳跃连接方式对BIT双时空图像转换器的输出特征进行堆叠,提高模型的上下文信息理解能力。以采集的无人机高速公路护栏损坏图像为实验数据,实验结果表明:DDE-BIT模型的交并比和F1分数分别为90.99%、95.28%,相较于原始模型分别提高了2.71%、1.51%,能够有效地提取护栏损坏的边缘信息。 展开更多
关键词 护栏损坏检测 无人机 ECA注意力机制 深度可分离卷积 图像处理 信息提取
在线阅读 下载PDF
基于改进YOLOv8n的矿用提升钢丝绳表面损伤图像识别
20
作者 毛清华 杨帆 +4 位作者 王超 仝旭耀 童军伟 张旭辉 薛旭升 《工矿自动化》 北大核心 2025年第4期100-106,152,共8页
针对矿用提升钢丝绳表面油污覆盖引发背景干扰、绳股间隙较大导致特征混淆及小目标损伤识别难度大等问题,提出了一种基于改进YOLOv8n的矿用提升钢丝绳表面损伤图像识别方法。在YOLOv8n主干网络中引入多尺度注意力模块(MSAM),通过增强损... 针对矿用提升钢丝绳表面油污覆盖引发背景干扰、绳股间隙较大导致特征混淆及小目标损伤识别难度大等问题,提出了一种基于改进YOLOv8n的矿用提升钢丝绳表面损伤图像识别方法。在YOLOv8n主干网络中引入多尺度注意力模块(MSAM),通过增强损伤特征与油污背景的空间特征区分能力,提升模型抗干扰能力;将YOLOv8n原有的3个检测头替换为4个轻量化小目标检测头,强化对小目标损伤的识别能力;采用深度可分离卷积(DSConv)替代标准卷积,减少了计算量,提高了识别速度。实验结果表明:改进YOLOv8n模型的平均精度均值(mAP)、识别精度和推理速度分别达92.6%,89.7%和43.5帧/s,相比YOLOv8n模型分别提高了3.1%,4.9%,34.7%;与Faster-RCNN,YOLOv5s,YOLOv8n,YOLOv10m,TWRD-Net,YOLOv5-TPH等主流模型相比,改进YOLOv8n模型对小目标损伤识别精度最高,同时保证了较高的实时性;在煤矿现场油污覆盖、绳股间隙较大的复杂场景中,改进YOLOv8n模型未出现漏检情况,且误检情况较少,平均识别准确率达90%。 展开更多
关键词 矿用提升钢丝绳 损伤图像识别 YOLOv8n 多尺度注意力模块 小目标检测 深度可分离卷积
在线阅读 下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部