On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion tha...On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion that the evolution of the amplitude satisfies the variable coefficient Korteweg-de Vries(KdV) equation.展开更多
The blades on the plane are one of the most important parts of the engine,in the course of service,due to high temperature,strong vibration and great centrifugal force and so on.The using environment is very bad,so it...The blades on the plane are one of the most important parts of the engine,in the course of service,due to high temperature,strong vibration and great centrifugal force and so on.The using environment is very bad,so it is easy to produce fatigue cracks in the welding site and the near surface of the root,which will seriously affect the blade of the work intensity and fatigue life,and even the safety of aircraft structure,causing a huge security risk.Therefore,it must be tested.In order to solve the problem of the rapid detection of aircraft engine in situ cracks,and gett the rela-tionship between feature information and detect depth,the laboratory experimental platform was built,laser was used to excite laser ultrasonic signals on a range of aviation aluminum plates with different depth defects,the collected sig-nal was processed by wavelet de-noising,and the band energy distribution of the reflected echo signal was studied by using wavelet packet.The results show that the energy of reflected echo signal is mainly concentrated in the S80~So7 band.When the depth of defect is 0.2 mm to 0.4 mm,the energy is mainly concentrated in the adjacent bands.When the depth of defect is 0.5 mm to 0.7 mm,the energy is mainly concentrated in the two bands.This method provides a way to quantify surface micro-defects by ultrasonic signals,which will lay a foundation for the future analysis of crack depth from band energy.In order to avoid the interference of other irregular cracks,the cracks of the aviation aluminum parts are used as ar-tificial way for producing.The overall size of the specimen is 200 mmx80 mmx100 mm,the width of the defect is 0.15 mm,the range of the defect depth is 0.2 mm~0.7 mm,step size is 0.1 mm,and the total number of the specimen is six.After the experimental data is proposed,choosing the reflected echo signal for analysis,performing wavelet packet transform,the decomposition layer is 8.The percentage in the Sao~Sa7band is 89.77%、91.82%、91.41%、90.94%、90.19%、and 87.86%.The result shows that most of the energy is concentrated in the first eight bands.Therefore,the paper selects the first eight bands for analysis.In order to analyze the distribution characteristics of the different depth defect and the band energy,the energy dis-tribution of the first four bands of the defect depth of 0.2 mm to 0.4 mm is plotted in Fig,according to the spectrum,getting the center frequency were 3.14 MHz,2.58 MHz,2.17 MHz.These frequencies are located in the S83,S82,S82 band,respectively,which are the largest energy band,but the energy distribution in the adjacent segment Ss:also ac-counts for a larger proportion.When the depth of the defect increases from 0.2 mm to 0.4 mm,the center frequency decreases gradually,and the sum of the energy of the center frequency band and the adjacent higher energy band in-creases gradually.展开更多
基金supported by the Meteorological Special Project of China(GYHY200806005)the National Natural Sciences Foundation of China(40805028,40675039,40575036)the Key Technologies R&D Program of China(2009BAC51B04)
文摘On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion that the evolution of the amplitude satisfies the variable coefficient Korteweg-de Vries(KdV) equation.
文摘The blades on the plane are one of the most important parts of the engine,in the course of service,due to high temperature,strong vibration and great centrifugal force and so on.The using environment is very bad,so it is easy to produce fatigue cracks in the welding site and the near surface of the root,which will seriously affect the blade of the work intensity and fatigue life,and even the safety of aircraft structure,causing a huge security risk.Therefore,it must be tested.In order to solve the problem of the rapid detection of aircraft engine in situ cracks,and gett the rela-tionship between feature information and detect depth,the laboratory experimental platform was built,laser was used to excite laser ultrasonic signals on a range of aviation aluminum plates with different depth defects,the collected sig-nal was processed by wavelet de-noising,and the band energy distribution of the reflected echo signal was studied by using wavelet packet.The results show that the energy of reflected echo signal is mainly concentrated in the S80~So7 band.When the depth of defect is 0.2 mm to 0.4 mm,the energy is mainly concentrated in the adjacent bands.When the depth of defect is 0.5 mm to 0.7 mm,the energy is mainly concentrated in the two bands.This method provides a way to quantify surface micro-defects by ultrasonic signals,which will lay a foundation for the future analysis of crack depth from band energy.In order to avoid the interference of other irregular cracks,the cracks of the aviation aluminum parts are used as ar-tificial way for producing.The overall size of the specimen is 200 mmx80 mmx100 mm,the width of the defect is 0.15 mm,the range of the defect depth is 0.2 mm~0.7 mm,step size is 0.1 mm,and the total number of the specimen is six.After the experimental data is proposed,choosing the reflected echo signal for analysis,performing wavelet packet transform,the decomposition layer is 8.The percentage in the Sao~Sa7band is 89.77%、91.82%、91.41%、90.94%、90.19%、and 87.86%.The result shows that most of the energy is concentrated in the first eight bands.Therefore,the paper selects the first eight bands for analysis.In order to analyze the distribution characteristics of the different depth defect and the band energy,the energy dis-tribution of the first four bands of the defect depth of 0.2 mm to 0.4 mm is plotted in Fig,according to the spectrum,getting the center frequency were 3.14 MHz,2.58 MHz,2.17 MHz.These frequencies are located in the S83,S82,S82 band,respectively,which are the largest energy band,but the energy distribution in the adjacent segment Ss:also ac-counts for a larger proportion.When the depth of the defect increases from 0.2 mm to 0.4 mm,the center frequency decreases gradually,and the sum of the energy of the center frequency band and the adjacent higher energy band in-creases gradually.