The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithm...The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.展开更多
Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCA...Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.展开更多
在Matlab/Simulink中应用Real-Time Windows Target模块重构状态观测器的实时仿真模型,采用该方法开发的实验系统既便于实现,又能和实际物理系统良好对接,有利于学生掌握状态观测器的相关知识和促进对Matlab的了解和应用。给出的应用实...在Matlab/Simulink中应用Real-Time Windows Target模块重构状态观测器的实时仿真模型,采用该方法开发的实验系统既便于实现,又能和实际物理系统良好对接,有利于学生掌握状态观测器的相关知识和促进对Matlab的了解和应用。给出的应用实例验证了方法的可行性。展开更多
This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the ...This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the total distance. This problem exists widely in real-life logistics distribution process.We propose a hybrid column generation algorithm(HCGA) for the OVRPTW, embedding both exact algorithm and metaheuristic. In HCGA, a label setting algorithm and an intelligent algorithm are designed to select columns from small and large subproblems, respectively. Moreover, a branch strategy is devised to generate the final feasible solution for the OVRPTW. The computational results show that the proposed algorithm has faster speed and can obtain the approximate optimal solution of the problem with 100 customers in a reasonable time.展开更多
文摘The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.
基金supported by the National Natural Science Foundation of China(7147117571471174)
文摘Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.
基金supported by the National Natural Science Foundation of China (61963022,51665025,61873328)。
文摘This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the total distance. This problem exists widely in real-life logistics distribution process.We propose a hybrid column generation algorithm(HCGA) for the OVRPTW, embedding both exact algorithm and metaheuristic. In HCGA, a label setting algorithm and an intelligent algorithm are designed to select columns from small and large subproblems, respectively. Moreover, a branch strategy is devised to generate the final feasible solution for the OVRPTW. The computational results show that the proposed algorithm has faster speed and can obtain the approximate optimal solution of the problem with 100 customers in a reasonable time.