Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit...Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.展开更多
An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filt...An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filters have been analyzed. Using linear modulating filters, we can obtain an identification model that is parameterized directly in continuous-time model parameters. By applying the results from discrete-time model identification to the obtained identification model, a continuous-time estimation method is developed. Considering the accuracy of parameter estimates, an instrumental variable (Ⅳ) method is proposed, and the design of modulating integral filter is discussed. The relationship between the accuracy of identification and the parameter of modulating filter is investigated, and some points about designing Gaussian wavelet modulating function are outlined. Finally, a simulation study is also included to verify the theoretical results.展开更多
Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for ...Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for the system. Compared with the previ-ous works, our results have less conservativeness. Furthermore, based on the state partition of continuous and resetting parts of system, a hybrid feedback controller is constructed, which stabi-lizes the closed-loop systems in finite time. Finally, a numerical example is provided to demonstrate the effectiveness of the pro-posed method.展开更多
This paper discusses some techniques for treating discontinuities of the right-hand functions of ordinary differential equations (ODEs) in real-time digital simulation (RTDS). The numericalexperiments show that these ...This paper discusses some techniques for treating discontinuities of the right-hand functions of ordinary differential equations (ODEs) in real-time digital simulation (RTDS). The numericalexperiments show that these techniques are effective.展开更多
Systems that are subject to both time-delay in state and input saturation are considered. We synthesize the anti-windup gain to enlarge the estimation of domain of attraction while guaranteeing the stability of the cl...Systems that are subject to both time-delay in state and input saturation are considered. We synthesize the anti-windup gain to enlarge the estimation of domain of attraction while guaranteeing the stability of the closed-loop system. An ellipsoid and a polyhedral set are used to bound the state of the system, which make a new sector condition valid. Other than an iterative algorithm, a direct designing algorithm is derived to compute the anti-windup compensator gain, which reduces the conservatism greatly. We analyze the delay-independent and delay-dependent cases, respectively. Finally, an optimization algorithm in the form of LMIs is constructed to compute the compensator gain which maximizes the estimation of domain of attraction. Numerical examples are presented to demonstrate the effectiveness of our approach.展开更多
Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time ser...Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time series is taken into account in the prediction procedure; parameters of reconstruction-detay and embedding-dimension for phase-space reconstruction are calculated in light of mutual-information and false-nearest-neighbor method, respectively. Precision and functionality have been demonstrated by the experimental results on the basis of the prediction of Lorenz chaotic time series.展开更多
Two design approaches of state feedback and output feedback tracking controllers are proposed for a class of strict feedback nonlinear time-delay systems by using backstepping technique. When the states of system cann...Two design approaches of state feedback and output feedback tracking controllers are proposed for a class of strict feedback nonlinear time-delay systems by using backstepping technique. When the states of system cannot be observed, the time-delay state observer is designed to estimate the system states. Domination method is used to deal with nonlinear time-delay function under the assumption that the nonlinear time-delay functions of systems satisfy Lipschitz condition. The global asymptotical tracking of the reference signal is achieved and the bound of all signals of the resultant closed-loop system is also guaranteed. By constructing a Lyapunov-Krasoviskii functional, the stability of the closed-loop system is proved. The feasibility of the proposed approach is illustrated by a simulation example.展开更多
This article deals with the uniformly globally asymptotic controllability of discrete nonlinear systems with disturbances.It is shown that the system is uniformly globally asymptotic controllability with respect to a ...This article deals with the uniformly globally asymptotic controllability of discrete nonlinear systems with disturbances.It is shown that the system is uniformly globally asymptotic controllability with respect to a closed set if and only if there exists a smooth control Lyapunov function.Further, it is obtained that the control Lyapunov function may be used to construct a feedback law to stabilize the closed-loop system.In addition, it is proved that for periodic discrete systems, the resulted control Lyapunov functions are also time periodic.展开更多
This paper deals with the problem of the optimal fault detection (FD) for linear discrete time-varying (LDTV) systems with delayed state and l(2)-norm bounded unknown input. The novelty lies in the designing of an eva...This paper deals with the problem of the optimal fault detection (FD) for linear discrete time-varying (LDTV) systems with delayed state and l(2)-norm bounded unknown input. The novelty lies in the designing of an evaluation function for the robust FD. The basic idea is to directly construct an evaluation function by using a weighted l(2)-norm of the measurement output, which achieves an optimal trade-off between the sensitivity to fault and the robustness to l(2)-norm bounded unknown input. To avoid complex computation, a feasible solution is obtained via the recursive computation by applying the orthogonal projection. It is shown that such an evaluation function provides a unified scheme for both the cases of unknown input being l(2)-norm bounded and jointly normal distribution, while a threshold may be chosen based on a priori knowledge of unknown input. A numerical example is given to demonstrate the effectiveness of the proposed method.展开更多
Stochastic switched epidemic systems with a discrete or distributed time delay are constructed and investigated. By the Lyapunov method and lto's differential rule, the existence and uniqueness of global positive sol...Stochastic switched epidemic systems with a discrete or distributed time delay are constructed and investigated. By the Lyapunov method and lto's differential rule, the existence and uniqueness of global positive solution of each system is proved. And stability conditions of the disease-free equilibrium of the systems are obtained. Numerical simulations are presented to illustrate the results.展开更多
基金supported by the National Key Research and Development Program of China(2016YFE0200400)the Key R&D Program of Shaanxi Province(2017KW-ZD-12)+1 种基金the Postdoctoral Science Foundation of Shaanxi Provincethe Nature Science Foundation of Shaanxi Province
文摘Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.
基金This project was supported by China Postdoctoral Science Foundation (2003034466)Scientific Research Fund of Hunan Provincial Education Department (02B032).
文摘An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filters have been analyzed. Using linear modulating filters, we can obtain an identification model that is parameterized directly in continuous-time model parameters. By applying the results from discrete-time model identification to the obtained identification model, a continuous-time estimation method is developed. Considering the accuracy of parameter estimates, an instrumental variable (Ⅳ) method is proposed, and the design of modulating integral filter is discussed. The relationship between the accuracy of identification and the parameter of modulating filter is investigated, and some points about designing Gaussian wavelet modulating function are outlined. Finally, a simulation study is also included to verify the theoretical results.
基金Supported by National Natural Science Foundation of China (60974148), Program for New Century Excellent Talents in University (NCET-10-0097), Sichuan Youth Science and Technology Fund (2011JQ0011), Southwest University for Nationalities Construction Projects for Graduate Degree Programs (2011XWD-S0805), and Southwest University for Nationalities Fundamental Research Funds for the Central Universities (12NZYTH01)
基金supported by the National Natural Science Foundation of China (60974139)
文摘Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for the system. Compared with the previ-ous works, our results have less conservativeness. Furthermore, based on the state partition of continuous and resetting parts of system, a hybrid feedback controller is constructed, which stabi-lizes the closed-loop systems in finite time. Finally, a numerical example is provided to demonstrate the effectiveness of the pro-posed method.
文摘This paper discusses some techniques for treating discontinuities of the right-hand functions of ordinary differential equations (ODEs) in real-time digital simulation (RTDS). The numericalexperiments show that these techniques are effective.
基金Supported by National Natural Science Foundation of P.R.China (60474045)973 Program of P.R.China (2002CB312200)the project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry, Zhejiang Province, and Zhejiang University
文摘Systems that are subject to both time-delay in state and input saturation are considered. We synthesize the anti-windup gain to enlarge the estimation of domain of attraction while guaranteeing the stability of the closed-loop system. An ellipsoid and a polyhedral set are used to bound the state of the system, which make a new sector condition valid. Other than an iterative algorithm, a direct designing algorithm is derived to compute the anti-windup compensator gain, which reduces the conservatism greatly. We analyze the delay-independent and delay-dependent cases, respectively. Finally, an optimization algorithm in the form of LMIs is constructed to compute the compensator gain which maximizes the estimation of domain of attraction. Numerical examples are presented to demonstrate the effectiveness of our approach.
文摘Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time series is taken into account in the prediction procedure; parameters of reconstruction-detay and embedding-dimension for phase-space reconstruction are calculated in light of mutual-information and false-nearest-neighbor method, respectively. Precision and functionality have been demonstrated by the experimental results on the basis of the prediction of Lorenz chaotic time series.
基金This project was supported by the National Nature Science Foundation (60374015) and Shanxi Province Nature Science Foundation (2003A15).
文摘Two design approaches of state feedback and output feedback tracking controllers are proposed for a class of strict feedback nonlinear time-delay systems by using backstepping technique. When the states of system cannot be observed, the time-delay state observer is designed to estimate the system states. Domination method is used to deal with nonlinear time-delay function under the assumption that the nonlinear time-delay functions of systems satisfy Lipschitz condition. The global asymptotical tracking of the reference signal is achieved and the bound of all signals of the resultant closed-loop system is also guaranteed. By constructing a Lyapunov-Krasoviskii functional, the stability of the closed-loop system is proved. The feasibility of the proposed approach is illustrated by a simulation example.
基金supported by the National Natural Science Foundation of China (60774011)the Natural Science Foundation of Fujian Province (2008J0026)
文摘This article deals with the uniformly globally asymptotic controllability of discrete nonlinear systems with disturbances.It is shown that the system is uniformly globally asymptotic controllability with respect to a closed set if and only if there exists a smooth control Lyapunov function.Further, it is obtained that the control Lyapunov function may be used to construct a feedback law to stabilize the closed-loop system.In addition, it is proved that for periodic discrete systems, the resulted control Lyapunov functions are also time periodic.
基金This work was supported by the National Natural Science Founda- tion of China (61374078) and Natural Science Foundation Project of Chongqing CSTC (cstc2014jcyjA40014).
基金supported by the National Natural Science Foundation of China(6133300561421063)the Research Fund for the Taishan Scholar Project of Shandong Province of China
文摘This paper deals with the problem of the optimal fault detection (FD) for linear discrete time-varying (LDTV) systems with delayed state and l(2)-norm bounded unknown input. The novelty lies in the designing of an evaluation function for the robust FD. The basic idea is to directly construct an evaluation function by using a weighted l(2)-norm of the measurement output, which achieves an optimal trade-off between the sensitivity to fault and the robustness to l(2)-norm bounded unknown input. To avoid complex computation, a feasible solution is obtained via the recursive computation by applying the orthogonal projection. It is shown that such an evaluation function provides a unified scheme for both the cases of unknown input being l(2)-norm bounded and jointly normal distribution, while a threshold may be chosen based on a priori knowledge of unknown input. A numerical example is given to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(60874114)
文摘Stochastic switched epidemic systems with a discrete or distributed time delay are constructed and investigated. By the Lyapunov method and lto's differential rule, the existence and uniqueness of global positive solution of each system is proved. And stability conditions of the disease-free equilibrium of the systems are obtained. Numerical simulations are presented to illustrate the results.