The geostress and rock blasting in underground engineering may greatly affect the stress thresholds of surrounding rock.In this study,pre-damage impact tests were first conducted on granite under varying confining pre...The geostress and rock blasting in underground engineering may greatly affect the stress thresholds of surrounding rock.In this study,pre-damage impact tests were first conducted on granite under varying confining pressures(5,10 and 15 MPa)and numbers of impacts(1,5,10 and 15 impacts).Then,uniaxial compression tests were undertaken on the pre-damaged granite to study the evolution of stress thresholds using the crack volume strain method and acoustic emission method.The crack damage stresses determined by the two methods were compared.Additionally,based on the rise time amplitude and average frequency,the evolution law of microcracks inside rock specimens was revealed,and an improved acoustic emission method was proposed.The results indicated that as the number of impacts increased,the crack closure stress,crack damage stress,and peak stress of granite specimens initially rose and then declined,while they continuously increased with the confining pressure.The proportion of shear cracks first declined and then rose with greater number of impacts and decreased with higher confining pressure,and that of tensile cracks showed the opposite trend.The improved acoustic emission method was more accurate in identifying the crack damage stress.展开更多
Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative id...Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative identifications of the first three stress thresholds are of great significance for characterizing the microcrack growth and damage evolution of rocks under compression.In this paper,a new method based on damage constitutive model is proposed to quantitatively measure the stress thresholds of rocks.Firstly,two different damage constitutive models were constructed based on acoustic emission(AE)counts and Weibull distribution function considering the compaction stages of the rock and the bearing capacity of the damage element.Then,the accumulative AE counts method(ACLM),AE count rate method(CRM)and constitutive model method(CMM)were introduced to determine the stress thresholds of rocks.Finally,the stress thresholds of 9 different rocks were identified by ACLM,CRM,and CMM.The results show that the theoretical stress−strain curves obtained from the two damage constitutive models are in good agreement with that of the experimental data,and the differences between the two damage constitutive models mainly come from the evolutionary differences of the damage variables.The results of the stress thresholds identified by the CMM are in good agreement with those identified by the AE methods,i.e.,ACLM and CRM.Therefore,the proposed CMM can be used to determine the stress thresholds of rocks.展开更多
Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to...Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions.展开更多
This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi...This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.展开更多
The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal ...The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal sequence under the restriction that component i is added before component j,while it is unachievable to compare all sequences when the number of components m is large.To achieve this,a constrained PWO model is first provided,and then the D-optimal designs for order-of addition experiments with minimal-points via the modified threshold accepting algorithm is established.The effectiveness of the proposed method is demonstrated through a job scheduling problem with a prior constraint for teaching cases.展开更多
Millimeter-Wave Weapons Detection System has been widely used in airport,custom-house and other safety checkpoint in recent years.In this paper,we propose a new method to make the image produced by Millimeter-wave Wea...Millimeter-Wave Weapons Detection System has been widely used in airport,custom-house and other safety checkpoint in recent years.In this paper,we propose a new method to make the image produced by Millimeter-wave Weapons Detection System more readily identifiable.It is found that the hidden weapon in the image is easier to be distinguished after adding suitable noise level and being denoised by 3D transform domain collaborative filtering(BM3D) [1].Furthermore,we proposed a improved version of BM3D to promote the performance.Experiment results are given to demonstrate the different performance for different added noise level.展开更多
鉴于射频识别(RFID)标签芯片苛刻的资源要求,为解决差分功耗分析(Differential Power Analysis,DPA)对密码算法实现方面的威胁难题,将新型DPA防护技术threshold与Piccolo密码算法相结合,提出了一种适用于RFID标签芯片应用的安全化密码...鉴于射频识别(RFID)标签芯片苛刻的资源要求,为解决差分功耗分析(Differential Power Analysis,DPA)对密码算法实现方面的威胁难题,将新型DPA防护技术threshold与Piccolo密码算法相结合,提出了一种适用于RFID标签芯片应用的安全化密码算法实现方案.分别基于布尔式重组和改进型穷举搜索的方式实现了面积最优的S盒及其逆的threshold(3,3)分享,提出了基于锁存器方式解决S盒及其逆实现中潜在的毛刺威胁问题,在Chartered 0.18μm工艺和100 kHz RFID运行频率下,将该方案的资源消耗控制在2155个等效门,平均电流约为2.60μA,基于FPGA的DPA攻击安全性分析结果表明该方案适合于低成本RFID标签芯片对密码算法轻型及实现安全的要求.展开更多
With the gradual depletion of mineral resources in the shallow part of the earth,resource exploitation continues to move deeper into the earth,it becomes a hot topic to simulate the whole process of rock strain soften...With the gradual depletion of mineral resources in the shallow part of the earth,resource exploitation continues to move deeper into the earth,it becomes a hot topic to simulate the whole process of rock strain softening,deformation and failure in deep environment,especially under high temperature and high pressure.On the basis of Lemaitre’s strain-equivalent principle,combined with statistics and damage theory,a statistical constitutive model of rock thermal damage under triaxial compression condition is established.At the same time,taking into account the existing damage model is difficult to reflect residual strength after rock failure,the residual strength is considered in this paper by introducing correction factor of damage variable,the model rationality is also verified by experiments.Analysis of results indicates that the damage evolution curve reflects the whole process of rock micro-cracks enclosure,initiation,expansion,penetration,and the formation of macro-cracks under coupled effect of temperature and confining pressure.Rock thermal damage shows logistic growth function with the increase of temperature.Under the same strain condition,rock total damage decreases with the rise of confining pressure.By studying the electron microscope images(SEM)of rock fracture,it is inferred that 35.40 MPa is the critical confining pressure of brittle to plastic transition for this granite.The model parameter F reflects the average strength of rock,and M reflects the morphological characteristics of rock stress–strain curves.The physical meanings of model parameters are clear and the model is suitable for complex stress states,which provides valuable references for the study of rock deformation and stability in deep engineering.展开更多
Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the fail...Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation.展开更多
基金Project(2023YFC2907400)by the National Key Research and Development Program of China-2023 Key Special ProjectProject(51974043)supported by the National Natural Science Foundation of China+2 种基金Project(SKLCRKF1908)supported by the Open Fund of the State Key Laboratory of Coal Resources in Western China,Xi’an University of Science and Technology,ChinaProject(2023JJ10072)suupported by the Hunan Provincial Natural Science Foundation for Distinguished Young ScholarsProject(2022RC1173)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘The geostress and rock blasting in underground engineering may greatly affect the stress thresholds of surrounding rock.In this study,pre-damage impact tests were first conducted on granite under varying confining pressures(5,10 and 15 MPa)and numbers of impacts(1,5,10 and 15 impacts).Then,uniaxial compression tests were undertaken on the pre-damaged granite to study the evolution of stress thresholds using the crack volume strain method and acoustic emission method.The crack damage stresses determined by the two methods were compared.Additionally,based on the rise time amplitude and average frequency,the evolution law of microcracks inside rock specimens was revealed,and an improved acoustic emission method was proposed.The results indicated that as the number of impacts increased,the crack closure stress,crack damage stress,and peak stress of granite specimens initially rose and then declined,while they continuously increased with the confining pressure.The proportion of shear cracks first declined and then rose with greater number of impacts and decreased with higher confining pressure,and that of tensile cracks showed the opposite trend.The improved acoustic emission method was more accurate in identifying the crack damage stress.
基金Projects(2021RC3007,2020RC3090)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProjects(52374150,52174099)supported by the National Natural Science Foundation of China。
文摘Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative identifications of the first three stress thresholds are of great significance for characterizing the microcrack growth and damage evolution of rocks under compression.In this paper,a new method based on damage constitutive model is proposed to quantitatively measure the stress thresholds of rocks.Firstly,two different damage constitutive models were constructed based on acoustic emission(AE)counts and Weibull distribution function considering the compaction stages of the rock and the bearing capacity of the damage element.Then,the accumulative AE counts method(ACLM),AE count rate method(CRM)and constitutive model method(CMM)were introduced to determine the stress thresholds of rocks.Finally,the stress thresholds of 9 different rocks were identified by ACLM,CRM,and CMM.The results show that the theoretical stress−strain curves obtained from the two damage constitutive models are in good agreement with that of the experimental data,and the differences between the two damage constitutive models mainly come from the evolutionary differences of the damage variables.The results of the stress thresholds identified by the CMM are in good agreement with those identified by the AE methods,i.e.,ACLM and CRM.Therefore,the proposed CMM can be used to determine the stress thresholds of rocks.
基金supported by the National Natural Science Foundation of China(Grant Nos.52475166,52175148)the Regional Collaboration Project of Shanxi Province(Grant No.202204041101044).
文摘Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions.
基金Project(11272119)supported by the National Natural Science Foundation of China。
文摘This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.
基金supported by National Natural Science Foundation of China(Grant Nos.11971204,12271270)Natural Science Foundation of Jiangsu Province of China(Grant No.BK20200108)the Zhongwu Youth Innovative Talent Program of Jiangsu University of Technology and the Third Level Training Object of the Sixth“333 Project”in Jiangsu Province。
文摘The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal sequence under the restriction that component i is added before component j,while it is unachievable to compare all sequences when the number of components m is large.To achieve this,a constrained PWO model is first provided,and then the D-optimal designs for order-of addition experiments with minimal-points via the modified threshold accepting algorithm is established.The effectiveness of the proposed method is demonstrated through a job scheduling problem with a prior constraint for teaching cases.
基金supported by the Tianjin Natural Science Foundation(08JCYBJC02200)the Keygrant Project of Chinese Ministry of Education(309009)the Natural Science Foundation of China(11171164)
文摘Millimeter-Wave Weapons Detection System has been widely used in airport,custom-house and other safety checkpoint in recent years.In this paper,we propose a new method to make the image produced by Millimeter-wave Weapons Detection System more readily identifiable.It is found that the hidden weapon in the image is easier to be distinguished after adding suitable noise level and being denoised by 3D transform domain collaborative filtering(BM3D) [1].Furthermore,we proposed a improved version of BM3D to promote the performance.Experiment results are given to demonstrate the different performance for different added noise level.
基金Projects(51604260,11802145)supported by the National Natural Science Foundation of ChinaProject(SKLGDUEK1204)supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering,ChinaProject(BK20160416)supported by the Natural Science Foundation of Jiangsu Province of China
文摘With the gradual depletion of mineral resources in the shallow part of the earth,resource exploitation continues to move deeper into the earth,it becomes a hot topic to simulate the whole process of rock strain softening,deformation and failure in deep environment,especially under high temperature and high pressure.On the basis of Lemaitre’s strain-equivalent principle,combined with statistics and damage theory,a statistical constitutive model of rock thermal damage under triaxial compression condition is established.At the same time,taking into account the existing damage model is difficult to reflect residual strength after rock failure,the residual strength is considered in this paper by introducing correction factor of damage variable,the model rationality is also verified by experiments.Analysis of results indicates that the damage evolution curve reflects the whole process of rock micro-cracks enclosure,initiation,expansion,penetration,and the formation of macro-cracks under coupled effect of temperature and confining pressure.Rock thermal damage shows logistic growth function with the increase of temperature.Under the same strain condition,rock total damage decreases with the rise of confining pressure.By studying the electron microscope images(SEM)of rock fracture,it is inferred that 35.40 MPa is the critical confining pressure of brittle to plastic transition for this granite.The model parameter F reflects the average strength of rock,and M reflects the morphological characteristics of rock stress–strain curves.The physical meanings of model parameters are clear and the model is suitable for complex stress states,which provides valuable references for the study of rock deformation and stability in deep engineering.
基金Projects(51475462,61174030,61473094,61374126)supported by the National Natural Science Foundation of China
文摘Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation.