期刊文献+
共找到1,513篇文章
< 1 2 76 >
每页显示 20 50 100
Redundant discrete wavelet transforms based moving object recognition and tracking 被引量:3
1
作者 Gao Tao Liu Zhengguang Zhang Jun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期1115-1123,共9页
A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transf... A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect. 展开更多
关键词 traffic monitoring moving object recognition moving object tracking redundant discrete wavelet.
在线阅读 下载PDF
Circular object recognition based on shape parameters 被引量:1
2
作者 Chen Aijun Li Jinzong Zhu Bing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期199-204,共6页
To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy ... To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy threshold algorithm and the binary image is labeled with an algorithm based on recursion technique. Then, shape parameters of all labeled regions are calculated and those regions with shape parameters satisfying certain conditions are recognized as circular objects. The algorithm is described in detail, and comparison experiments with the randomized Hough transformation (RHT) are also provided. The experimental results on synthetic images and real images show that the proposed method has the merits of fast recognition rate, high recognition efficiency and the ability of anti-noise and anti-jamming. In addition, the method performs well when some circular objects are little deformed and partly misshapen. 展开更多
关键词 Circular object Pattern recognition Shape parameter Region labeling Image segmentation
在线阅读 下载PDF
Gabor Wavelet Selection and SVM Classification for Object Recognition 被引量:15
3
作者 SHEN Lin-Lin JI Zhen 《自动化学报》 EI CSCD 北大核心 2009年第4期350-355,共6页
关键词 小波选择 支持向量机 目标识别 特征
在线阅读 下载PDF
基于改进YOLOv8的果园复杂环境下苹果检测模型研究 被引量:2
4
作者 岳有军 漆潇 +1 位作者 赵辉 王红君 《南京信息工程大学学报》 北大核心 2025年第1期31-41,共11页
为了使采摘机器人能够在果园复杂环境下(如不同光照条件、叶子遮挡、密集的苹果群和超远视距等场景)对成熟程度各异的苹果果实进行快速且精确的检测,本文提出一种基于改进YOLOv8的苹果果实检测模型.首先,将EMA注意力机制模块集成到YOLOv... 为了使采摘机器人能够在果园复杂环境下(如不同光照条件、叶子遮挡、密集的苹果群和超远视距等场景)对成熟程度各异的苹果果实进行快速且精确的检测,本文提出一种基于改进YOLOv8的苹果果实检测模型.首先,将EMA注意力机制模块集成到YOLOv8模型中,使模型更加关注待检测果实区域,抑制背景和枝叶遮挡等一般特征信息,提高被遮挡果实的检测准确率;其次,使用提取特征更加高效的三支路DWR模块对原始C2f模块进行替换,通过多尺度特征融合方法提高小目标检测能力;同时结合DAMO-YOLO的思想,对原始YOLOv8颈部进行重构,实现高层语义和低层空间特征的高效融合;最后,使用Inner-SIoU损失函数对模型进行优化,提高识别精度.在复杂的果园环境中,以苹果作为检测对象,实验结果表明:本文所提算法在测试集下的查准率、召回率、mAP_(0.5)、mAP_(0.5~0.95)以及F1分数分别达到86.1%、89.2%、94.0%、64.4%和87.6%,改进后的算法在大部分指标上均优于原始模型.在不同数量果实场景下的对比实验结果表明,该方法具有优异的鲁棒性. 展开更多
关键词 模式识别 深度学习 目标检测 YOLOv8
在线阅读 下载PDF
后挂式骨导助听器听力干预短期效果的临床评估 被引量:1
5
作者 李蕴 张宏征 +5 位作者 蔡洁青 黄美萍 杨璐 闫冰岩 宋依航 郗昕 《听力学及言语疾病杂志》 北大核心 2025年第1期50-54,共5页
目的 比较韶音后挂式骨导助听器对不同类型听力损失患者的听力干预短期效果,探讨其临床应用前景。方法 55例听力损失患者(年龄18~82岁;传导性听力损失9例,感音神经性听力损失15例,混合性听力损失31例;左右耳0.5、1、2、4 kHz四个频率的... 目的 比较韶音后挂式骨导助听器对不同类型听力损失患者的听力干预短期效果,探讨其临床应用前景。方法 55例听力损失患者(年龄18~82岁;传导性听力损失9例,感音神经性听力损失15例,混合性听力损失31例;左右耳0.5、1、2、4 kHz四个频率的骨导纯音听阈均≤60 dB HL)配戴韶音后挂式骨导助听器,分别于配戴助听器前和配戴第14±2 d行声场总体听阈、单音节识别率及安静环境语句识别阈测试,比较配戴助听器前后的结果差异。并于配戴第14±2 d使用IOI-HA问卷对助听器使用效果进行评估。结果 患者配戴后挂式骨导式助听器后声场四个频率平均听阈(39.3±4.9 dB HL)较配戴前(56.5±8.2 dB HL)显著改善,差异有统计学意义(P<0.001)。患者助听前单音节识别率(给声强度:患者助听前双音节言语识别阈减5 dB)为29.8%±11.4%,配戴第14±2 d为72.4%±14.4%,配戴后单音节识别率显著提高,差异有统计学意义(P<0.001)。患者语句识别阈由配戴前的48.6±9.7 dB HL降至34.3±5.6 dB HL,差异有统计学意义(P<0.001)。配戴14±2 d时IOI-HA问卷评估总分平均值为29.0±3.8分。结论 后挂式骨导助听器可显著提高传导性、0.5~4 kHz骨导纯音听阈不超过60 dB HL的混合性及感音神经性听力损失患者的听力及言语识别能力。 展开更多
关键词 听力损失 骨导助听器 言语识别率 语句识别阈 IOI-HA问卷
在线阅读 下载PDF
自然环境下基于改进YOLOv7的梨花识别方法 被引量:2
6
作者 张秀花 魏华杰 +3 位作者 孔德刚 刘尚坤 黄征 王洪森 《农业工程学报》 北大核心 2025年第2期224-232,共9页
针对自然环境下梨花易被遮挡、背景杂乱、光照条件与目标距离不断变化等特点导致梨花识别难和精度不高的问题,该研究提出了一种基于改进YOLOv7模型的梨花识别算法。该算法首先加入P2小目标层,增加了特征提取与模型多尺度融合能力,使被... 针对自然环境下梨花易被遮挡、背景杂乱、光照条件与目标距离不断变化等特点导致梨花识别难和精度不高的问题,该研究提出了一种基于改进YOLOv7模型的梨花识别算法。该算法首先加入P2小目标层,增加了特征提取与模型多尺度融合能力,使被遮挡的梨花目标更好地被捕获;其次,在输出检测端末尾加入CBAM(convolutional block attention module)注意力机制模块,提高模型的上下文理解能力,提升YOLOv7在各种场景下(不同光照条件、复杂背景等)的表现;最后,将CIoU(complete intersection over union)损失函数优化为NWD(normalized weighted distance)损失函数,针对不同形状的目标进行精确的边界框回归,提高模型对复杂背景梨花目标与远距离梨花目标的检测精度。试验结果表明:改进模型与原模型相比,精确率、召回率、mAP和F1-score分别提高了2.1、1.2、1.9和0.6个百分点,达到了99.4%、99.6%、96.4%和89.8%;与其他主流算法相比,各评价指标均有优势。研究结果可为梨园自然环境下梨花精准识别提供支撑。 展开更多
关键词 梨花 图像识别 YOLOv7 自然环境 小目标层 CBAM 损失函数
在线阅读 下载PDF
基于YOLO-Z的果实识别检测算法 被引量:1
7
作者 苏佳 罗都 +2 位作者 梁奔 冯康康 张建燕 《计算机工程与设计》 北大核心 2025年第5期1503-1511,共9页
针对当前果实识别中检测速度慢和遮挡目标识别准确率低的问题,提出一种YOLO-Z果实识别算法。使用YOLOv7-Tiny作为基础模型,采用轻量级的T-Net作为新的特征提取网络,减少网络层数,解决参数量过大及模型计算速度过慢的问题;使用AFPN特征... 针对当前果实识别中检测速度慢和遮挡目标识别准确率低的问题,提出一种YOLO-Z果实识别算法。使用YOLOv7-Tiny作为基础模型,采用轻量级的T-Net作为新的特征提取网络,减少网络层数,解决参数量过大及模型计算速度过慢的问题;使用AFPN特征融合结构缩减非相邻层之间较大的语义差距,增强特征信息的提取,提升模型的精度;引入损失函数Repulsion Loss,用于计算遮挡损失,解决目标遮挡问题,提高果实识别检测效果。实验结果表明,改进后的模型参数量达4.3 M,FPS为每秒200帧,mAP达到93.40%,较YOLOv7-Tiny提升0.9个百分点,参数量下降1.7 M,验证了该模型的有效性。 展开更多
关键词 目标检测 特征信息 分类回归 果实识别 目标遮挡 每秒传输帧数 平均检测精度均值
在线阅读 下载PDF
基于改进YOLO 11n模型的棉花田间复杂环境障碍物检测方法 被引量:3
8
作者 韩科立 王振坤 +3 位作者 余永峰 刘淑平 韩树杰 郝付平 《农业机械学报》 北大核心 2025年第5期111-120,共10页
针对棉花田间复杂环境障碍物被遮挡致准确检测难、边缘设备算力有限的问题,本文提出一种基于改进YOLO 11n模型的田间障碍物检测方法。首先,采用轻量级网络StarNet作为主要特征提取网络,并引入DBA模块(Dynamic position bias attention b... 针对棉花田间复杂环境障碍物被遮挡致准确检测难、边缘设备算力有限的问题,本文提出一种基于改进YOLO 11n模型的田间障碍物检测方法。首先,采用轻量级网络StarNet作为主要特征提取网络,并引入DBA模块(Dynamic position bias attention block)重构C2PSA(Convolutional block with parallel spatial attention),以增强多尺度特征之间的交互能力;其次,使用KAGNConv(Kolmogorov-Arnold generalized network convolution)替换基线模型C3k2(Cross stage partial with kernel size 2)模块中的瓶颈结构,实现对精细特征提取的同时,给予模型更高灵活性和可解释性;最后,集成分离与增强注意力模块(Separated and enhancement attention module,SEAM)至检测头,增强模型在遮挡场景中的检测能力。试验结果表明,改进模型YOLO 11n-SKS与基线模型相比精确率、召回率、mAP_(50)、mAP_(50-95)分别提升2.3、2.1、1.3、1.4个百分点,达到91.7%、88.3%、91.9%、62.3%,模型浮点数运算量仅为4.4×10^(9)FLOPs,模型参数量减少17.1%。本研究模型在性能和计算复杂度之间实现了较好的平衡,满足棉田收获作业场景中实时检测需求,降低了部署边缘设备算力要求,为采棉机自主安全作业提供技术支撑。 展开更多
关键词 采棉机 障碍物检测 深度相机 YOLO 11n模型 目标识别
在线阅读 下载PDF
基于2D卷积神经网络的3D点云物体检测
9
作者 李晓丽 王乐 +1 位作者 杜振龙 陈东 《计算机工程与应用》 北大核心 2025年第23期297-304,共8页
激光雷达在自动驾驶和工业自动化领域已得到初步应用,获取了大量的场景、物体等点云数据,这些点云数据具有维度高、不规则的特性,已有的深度学习网络模型在处理这些数据时需用到计算代价高昂的三维卷积,其时空复杂度高且不能在线应用。... 激光雷达在自动驾驶和工业自动化领域已得到初步应用,获取了大量的场景、物体等点云数据,这些点云数据具有维度高、不规则的特性,已有的深度学习网络模型在处理这些数据时需用到计算代价高昂的三维卷积,其时空复杂度高且不能在线应用。针对传统网络模型处理点云数据的缺陷,提出一种基于2D卷积神经网络的3D点云物体识别方法,所提方法把不规则的点云数据统计规整为点云柱,用卷积、池化提取点云柱簇的特征,将三维的点云数据编码转化为二维的类图像特征数据;使用包含注意力机制的二维卷积神经网络在多个感受野提取充分表示点云的多尺度隐特征,解码网络根据位置、方向及物体种类识别点云物体。实验基于AscendAtlas 200DK边端设备,单次推理耗时291 ms,实验结果与传统点云目标检测网络进行比较,分别以14.7、13.2、3.4倍的性能提升优于Voxel-Net、F-PoitnNet以及Second网络模型;在KITTI数据集与ContFuse等14种点云目标检测算法进行精度对比,与次优算法相比,平均精度提升在2.3%以上;设计针对二维卷积以及注意力机制的消融实验,两个模块在模型大小与推理精度上分别提升50.9%和5.37%。实验结果表明,所提方法可高效、鲁棒、准确地检测3D点云数据的目标物体。 展开更多
关键词 3D点云 点云物体识别 深度学习 点云柱 类图像
在线阅读 下载PDF
基于改进网格点回归机制的近色背景下赣南脐橙检测方法
10
作者 冯国富 曹伊炀 +1 位作者 吴开军 陈明 《农业机械学报》 北大核心 2025年第9期607-617,共11页
为实现对大型果园中果实生长状况的有效监测,针对赣南脐橙生长过程中在近色背景下受光线影响难以识别的问题,本文提出了一种基于改进网格点回归机制的检测算法Grid R-CNN ScN(Similar-color network)。该算法在Grid R-CNN网格点回归机... 为实现对大型果园中果实生长状况的有效监测,针对赣南脐橙生长过程中在近色背景下受光线影响难以识别的问题,本文提出了一种基于改进网格点回归机制的检测算法Grid R-CNN ScN(Similar-color network)。该算法在Grid R-CNN网格点回归机制基础上引入恒等循环神经网络(Identity recurrent neural network,IRNN)模块增加上下文信息,以迭代优化目标识别结果;在RMSProp优化策略中加入CosineAnnealingLR调度器,克服梯度爆炸导致的特征学习不充分问题;采用非极大值抑制(Non-maximum suppression,Soft-NMS)算法提高近色背景下赣南脐橙果实的召回率;结合跨图像采样(Cross-image sampling,CIS)策略增强模型在近色背景下的泛化能力。试验结果表明,Grid R-CNN ScN与Faster R-CNN、Grid R-CNN相比,召回率分别提高4.73、3.67个百分点,mAP@50提高11.78、9.27个百分点,模型文件存储占用量减少4.29 MB和5.07 MB,显存占用量仅为原模型的60%;与DETR、Swin Transformer相比,召回率分别提高4.19、3.84个百分点,mAP@50和mAP@50-95分别提高8.05、6.22个百分点和8.60、4.97个百分点,模型文件存储占用量减少9.67 MB和2.83 MB,显存占用量仅为原模型的44%;与YOLO v8和YOLO v11相比,召回率分别提高2.15、3.09个百分点,mAP@50和mAP@50-95分别提高5.38、6.25个百分点和2.55、3.07个百分点;跨图像采样策略显著增强了模型泛化能力。试验结果表明,本文提出的改进方法能够显著提高赣南脐橙在近色背景下的识别精度,可为大型果园中果实生长状况监测提供支持。 展开更多
关键词 赣南脐橙 目标检测 近色背景 Grid R-CNN 图像识别
在线阅读 下载PDF
充足主义的分配正义理论如何应对门槛异议
11
作者 高景柱 《河南社会科学》 北大核心 2025年第9期34-43,共10页
作为一种分配正义理论,充足主义理论的核心理念是每个人都应该处于充足门槛之上,一旦该目标得以实现,正义也就实现了。这种理论面临的一个重要挑战是充足门槛具有任意性和模糊性。不少充足主义理论的支持者试图从单一门槛和多重门槛这... 作为一种分配正义理论,充足主义理论的核心理念是每个人都应该处于充足门槛之上,一旦该目标得以实现,正义也就实现了。这种理论面临的一个重要挑战是充足门槛具有任意性和模糊性。不少充足主义理论的支持者试图从单一门槛和多重门槛这两个方面来解决上述问题,然而,对充足门槛的设定离不开比较标准,这与充足主义理论试图将自身呈现为一种非比较性的学说相背离。充足主义者设定的某些充足门槛仍然没有摆脱要么太低、要么太高这一困境。 展开更多
关键词 充足主义 平等主义 分配正义 门槛异议
在线阅读 下载PDF
结合时空注意力的视触融合目标识别方法
12
作者 刘佳 栗文龙 +2 位作者 陈大鹏 张松 黄孝荣 《计算机工程与应用》 北大核心 2025年第18期175-186,共12页
针对目前智能机器人领域中,利用多帧连续视觉和触觉信息时,对时空信息和模态间的异构信息处理不足的问题,提出了一种结合时空注意力的视触融合目标识别方法。该方法利用Swin Transformer模块从视觉和触觉图像中分别提取特征,减轻模态间... 针对目前智能机器人领域中,利用多帧连续视觉和触觉信息时,对时空信息和模态间的异构信息处理不足的问题,提出了一种结合时空注意力的视触融合目标识别方法。该方法利用Swin Transformer模块从视觉和触觉图像中分别提取特征,减轻模态间的异构性;使用基于注意力瓶颈机制的时空Transformer模块,实现视觉和触觉特征信息的时空交互和跨模态交互;通过多头自注意力融合模块,实现视触觉特征中信息的自适应聚合,提高了算法对目标识别的准确性;通过全连接层获得目标识别的结果。该模型在The Touch and Go公共数据集上的精确率和F1分数分别为98.38%和96.83%,比效果最好的对比模型提高了0.90和0.63个百分点。此外,消融实验也验证了提出的各个模块的有效性。 展开更多
关键词 多模态融合 目标识别 视触融合 TRANSFORMER 自注意力 时空信息
在线阅读 下载PDF
融合深度信息与运动趋势的羊只多目标跟踪方法
13
作者 王美丽 杨恩德 《农业机械学报》 北大核心 2025年第5期475-481,491,共8页
近年来,随着羊只养殖向大规模和精细化的方向发展,羊场对智能化管理的需求日益增加。因此,精准的个体识别和行为监测变得尤为重要,对多目标跟踪(Multiple object tracking, MOT)算法的准确性提出了更高要求。然而,现有的MOT算法在目标... 近年来,随着羊只养殖向大规模和精细化的方向发展,羊场对智能化管理的需求日益增加。因此,精准的个体识别和行为监测变得尤为重要,对多目标跟踪(Multiple object tracking, MOT)算法的准确性提出了更高要求。然而,现有的MOT算法在目标遮挡和动态场景下的性能仍不理想。本文提出两种跟踪线索:深度调制交并比(Depth modulated intersection over union, DIoU)和轨迹方向建模(Tracklet direction modeling, TDM),旨在补充交并比(Intersection over union, IoU)线索,提高多目标跟踪的精准度和鲁棒性。DIoU线索通过引入目标的深度信息改进了传统的IoU计算方法。TDM聚焦于目标的运动趋势,预测其未来的移动方向。本文将DIoU和TDM跟踪线索集成到BoT-SORT算法中,形成改进的多目标跟踪算法。在两个私有数据集上,改进算法相比基线方法,MOTA(Multiple object tracking accuracy)指标分别提高1.6、1.7个百分点,IDF1(Identification F1 score)指标分别提高1.9、1.0个百分点。结果显示,改进算法在复杂场景中的跟踪连续性和准确性显著提升。 展开更多
关键词 多目标跟踪 识别 羊只 BoT-SORT 数据关联 目标检测
在线阅读 下载PDF
基于BiFPN优化的YOLOv8架构在皮革缺陷识别中的应用
14
作者 唐灏 陈法明 +1 位作者 冯志鹏 何凌志 《皮革科学与工程》 北大核心 2025年第5期22-30,60,共10页
传统的图像处理方法难以有效应对复杂背景和不同尺度的缺陷,文章提出了一种融合双向特征金字塔网络(BiFPN)的YOLOv8架构优化策略,旨在提升皮革缺陷识别的精度和效率。YOLOv8作为一种高效的目标检测框架,结合BiFPN的多尺度特征融合优势,... 传统的图像处理方法难以有效应对复杂背景和不同尺度的缺陷,文章提出了一种融合双向特征金字塔网络(BiFPN)的YOLOv8架构优化策略,旨在提升皮革缺陷识别的精度和效率。YOLOv8作为一种高效的目标检测框架,结合BiFPN的多尺度特征融合优势,增强了模型在复杂背景下的特征提取能力。通过在YOLOv8中引入BiFPN模块,模型能够更好地捕捉不同尺度的皮革缺陷,并通过优化后的损失函数进一步提高识别的准确性和稳定性。实验结果表明,改进前的YOLOv8权重为6.3 MB,改进后降至4.3 MB,且mAP50提高了0.2%。该优化策略相较于传统方法和未融合BiFPN的YOLOv8,提升了识别精度和识别速度,优化了YOLOv8框架在皮革缺陷检测中的有效性及实际应用潜力。 展开更多
关键词 BiFPN YOLOv8 皮革 缺陷识别 目标检测 多尺度特征融合 深度学习 优化策略
在线阅读 下载PDF
基于Snake与注意力机制的船舶实例分割方法
15
作者 陈晨 胡松涛 +3 位作者 马枫 赵新征 魏月楠 舒忠诚 《中国舰船研究》 北大核心 2025年第5期307-320,共14页
[目的]船舶的实例分割可服务于船舶监测、识别和跟踪等任务,支撑船舶智能航行。然而,受船舶形状尺度多变及环境因素的干扰,已有实例分割方法在船舶轮廓提取上表现不佳。为解决此问题,提出基于曲线递归的Ship Contour方法。[方法]通过改... [目的]船舶的实例分割可服务于船舶监测、识别和跟踪等任务,支撑船舶智能航行。然而,受船舶形状尺度多变及环境因素的干扰,已有实例分割方法在船舶轮廓提取上表现不佳。为解决此问题,提出基于曲线递归的Ship Contour方法。[方法]通过改进CenterNet方法提取分层特征,融合Deep Layer Aggregation-60骨干网络,兼顾精度和速度;优化Block结构、引入ECA通道注意力机制增强特征提取的能力,使用Mish激活函数代替ReLU适应深层学习;引入平移不变的轮廓变形方法、Dynamic Matching Loss损失函数加快最终轮廓的提取。[结果]在2300张样本的2023Ship-seg专用数据集上,所提出方法的准确率AP0.5:0.95达到64.0%,召回率AR0.5:0.95达到67.9%,优于主流实例分割算法。[结论]所提方法能有效提升监控与智能航行场景下的视觉处理效果。 展开更多
关键词 图像处理 图像分割 船舶实例分割 注意力机制 SNAKE模型 目标识别 特征提取
在线阅读 下载PDF
基于潜在有价值样本挖掘的半监督三维目标检测
16
作者 孙立辉 李佳霖 刘夏 《计算机应用研究》 北大核心 2025年第2期612-617,共6页
为了解决当前半监督三维目标检测算法中,传统的固定阈值方法在过滤伪标签时不够灵活,舍弃了大量有价值的伪标签,没有充分利用潜在有价值样本的问题,提出了一种基于潜在有价值样本挖掘的半监督三维目标检测方法。首先,不再使用固定阈值... 为了解决当前半监督三维目标检测算法中,传统的固定阈值方法在过滤伪标签时不够灵活,舍弃了大量有价值的伪标签,没有充分利用潜在有价值样本的问题,提出了一种基于潜在有价值样本挖掘的半监督三维目标检测方法。首先,不再使用固定阈值过滤伪标签,采用基于得分聚类的自适应阈值生成方法,分别为不同的类别生成过滤伪标签时需要的阈值,保留更多有价值的伪标签;其次,由于标签由类别和边界框信息组成,提出了一种联合置信度过滤伪标签的方法,使用对象置信度、分类置信度和IoU置信度的乘积来过滤伪标签,改善伪标签的质量;最后,对样本数量较少的类别生成稠密伪标签,筛选未通过联合置信度过滤的部分数据,以软伪标签的形式保留伪标签,更充分地利用潜在有价值的样本。在KITTI数据集上,与PV-RCNN方法相比,所提方法在仅1%标记数据的情况下,汽车类提高了6.5百分点,行人类提高了9百分点,自行车类提高了25百分点,实验结果证明了所提方法的有效性。 展开更多
关键词 目标检测 半监督 稠密伪标签 阈值 软伪标签
在线阅读 下载PDF
基于FAS-YOLOv8n的爬岸上草小龙虾多源图像融合识别方法
17
作者 李路 孙超奇 +3 位作者 周玉凡 周铖钰 寇圣宙 陈彦祺 《农业机械学报》 北大核心 2025年第8期526-534,共9页
针对小龙虾养殖夜间巡塘效率低、劳动成本高的问题,提出了一种基于改进YOLO v8n的轻量化爬岸上草小龙虾识别方法(FAS-YOLOv8n)。首先,针对夜晚自然环境下小龙虾图像质量低的问题,采集RGB和红外图像,融合小龙虾的多源信息。其次,在YOLO ... 针对小龙虾养殖夜间巡塘效率低、劳动成本高的问题,提出了一种基于改进YOLO v8n的轻量化爬岸上草小龙虾识别方法(FAS-YOLOv8n)。首先,针对夜晚自然环境下小龙虾图像质量低的问题,采集RGB和红外图像,融合小龙虾的多源信息。其次,在YOLO v8n的骨干网络中使用Ghost卷积和C2f_Repghost模块,减少模型的参数量。然后,在骨干网络和颈部网络之间添加可变形注意力(Deformable attention,DA)机制,增强模型对小龙虾的关注度,提高模型的特征提取效率。最后,采用VoVGSCSP模块替换C2f模块,提升颈部网络的特征融合速度,进一步降低计算量。实验结果表明,FAS-YOLOv8n模型在融合图像数据集上的识别精确率为90.62%,平均精度均值和召回率分别为92.9%和85%。相较于RGB图像数据集和红外图像数据集,识别精确率、平均精度均值和召回率分别提高6.05、8.46个百分点,4.78、7.14个百分点,3.84、3.87个百分点。利用融合数据集进行试验,FAS-YOLOv8n模型较原始模型平均精度均值提高5.1个百分点,参数量和浮点数运算量分别降低13.29%和23.17%,模型内存占用量仅为6.2 MB,检测速度为86 f/s。识别效果优于其他主流目标检测模型,能够实现模型轻量化部署,为巡塘无人机的应用提供技术支撑。 展开更多
关键词 小龙虾 多源图像 图像融合 目标识别 深度学习 YOLO v8n
在线阅读 下载PDF
一种改进的K-PCA与PNN结合的快速高光谱遥感分类算法
18
作者 简萌 陈旭凤 +1 位作者 鲁军 郝敏钗 《河北大学学报(自然科学版)》 北大核心 2025年第4期343-351,共9页
高光谱遥感数据可以提供更加丰富的地物信息,但因其数据维度高、冗余性强等特点导致传统分类方法效率低下.针对此问题本文提出一种改进的核-主成分分析(kernel-principalcomponentanalysis,K-PCA)与概率神经网络(probabilisticneuralnet... 高光谱遥感数据可以提供更加丰富的地物信息,但因其数据维度高、冗余性强等特点导致传统分类方法效率低下.针对此问题本文提出一种改进的核-主成分分析(kernel-principalcomponentanalysis,K-PCA)与概率神经网络(probabilisticneuralnetwork,PNN)结合的快速高光谱遥感分类算法.首先提出一种最近邻的样本选择方法,用以筛选更具代表性的地物光谱数据;其次提出一种基于半数重采样的主成分优选策略,有效去除噪声并保留光谱本质特征,大幅度降低数据维度;最后融合K-PCA的非线性降维特性与PNN的最优贝叶斯分类能力进行地物识别.在利用AVIRIS高光谱数据集的验证实验中,本算法不仅将分类精度提升至89.9%,较传统方法提升显著,且运算效率大幅提升.结果表明该算法在兼顾分类精度与实时性的高光谱地物识别场景中凸显优势,为遥感大数据智能处理提供了高效解决方案. 展开更多
关键词 高光谱遥感数据 地物识别 核-主成分分析 概率神经网络 半数重采样
在线阅读 下载PDF
基于深度学习的玉米粒识别系统的设计与实现
19
作者 丁电宽 李健 +1 位作者 李立新 邵军波 《现代农业科技》 2025年第14期150-154,165,共6页
玉米作为全球重要的粮食作物之一,其品质检测对保障粮食安全具有重要意义。通过基于深度学习的两阶段目标检测算法对完整饱满、完整偏小和霉变或破损的玉米粒进行检测和识别,以AI EdgeBoard计算卡(FZ3B)为主控芯片,设计了一套玉米粒识... 玉米作为全球重要的粮食作物之一,其品质检测对保障粮食安全具有重要意义。通过基于深度学习的两阶段目标检测算法对完整饱满、完整偏小和霉变或破损的玉米粒进行检测和识别,以AI EdgeBoard计算卡(FZ3B)为主控芯片,设计了一套玉米粒识别系统,利用百度飞桨的EasyData智能数据服务平台对数据集进行标注和预处理,搭建了玉米粒识别模型并进行训练和测试。该系统实现了高效率和高精度的玉米粒识别,可以广泛应用于玉米品质检测等领域。经测试,模型部署到硬件之后,该系统在玉米粒识别任务上的准确率达到了95%以上。 展开更多
关键词 深度学习 玉米粒识别 两阶段目标检测 图像处理 特征点提取
在线阅读 下载PDF
基于无人机影像和MDIEA-YOLO苗木识别模型的造林验收智能系统
20
作者 王武魁 廉瑞峰 +3 位作者 吴明晶 张大兴 石燕妮 谷亚宇 《北京林业大学学报》 北大核心 2025年第5期14-25,共12页
【目的】传统造林验收方法效率低且难以适应复杂场景,同时无人机影像难以直接用于AI模型输入,制约了造林智能化验收的实现。本研究针对造林验收场景提出一种基于无人机影像的MDIEA-YOLO检测模型,旨在实现对造林幼苗的高效识别与计数,提... 【目的】传统造林验收方法效率低且难以适应复杂场景,同时无人机影像难以直接用于AI模型输入,制约了造林智能化验收的实现。本研究针对造林验收场景提出一种基于无人机影像的MDIEA-YOLO检测模型,旨在实现对造林幼苗的高效识别与计数,提高造林验收的精确度和效率,为林业管理现代化提供技术支持。【方法】为实现上述目标,本研究开发了“多维交互增强注意力模块”(MDIEA),该模块融合了卷积块注意力机制和Shuffle Attention机制,能够高效处理复杂场景和小目标特征,显著提升网络的解析能力。通过将MDIEA嵌入YOLOv8特征提取网络,细化的通道和空间注意力加权增强了关键特征的识别能力。此外,引入XIoU损失函数优化了模型对小型和重叠目标的边界定位能力,进一步提升检测精度。最终,构建了基于无人机影像和MDIEA-YOLO模型的端到端影像预处理流程,实现了造林幼苗的自动识别与计数。【结果】在福建将乐国有林场的实验中,MDIEA-YOLO模型在1年生、2年生、3年生数据集上分别获得了97.5%、96.1%、96.8%的mAP0.5值,明显优于其他对比模型。在不同光照和分辨率条件下,MDIEA-YOLO模型的m AP0.5值均保持在92%以上,显示出良好的鲁棒性。在处理100张影像时,MDIEA-YOLO模型的CPU与GPU处理效率相近,无明显差异,表明该系统在实际应用中具有较高的灵活性和适应性。与人工检验对比发现,该系统在关键指标上展现了与人工检验相当甚至更高的准确性和效率,证明了系统的可靠性和实用性。【结论】本研究提出的造林验收无人机影像预处理系统,有效推动了造林验收的智能化进程,显著提升了验收效率和精度,为造林验收领域提供了新的技术解决方案,具备广泛的应用前景。未来,将继续优化模型性能,扩大数据集规模,以适应更广泛的应用场景,推动林业管理的现代化进程。 展开更多
关键词 数字化造林验收 无人机(UAV) 图像识别 小目标检测 YOLOv8 注意力机制 损失函数优化
在线阅读 下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部