微通道散热器是应对电子器件散热的有效方法,但目前常规通道存在功耗大等问题。分形结构被认为是质能运输效率最高结构之一。按照Murray定律和“黄金比例phi”设计Y型和Ψ-Y型微通道的结构,得到4种微通道:Ψ-Y-M、Y-M、Ψ-Y-phi、Y-phi...微通道散热器是应对电子器件散热的有效方法,但目前常规通道存在功耗大等问题。分形结构被认为是质能运输效率最高结构之一。按照Murray定律和“黄金比例phi”设计Y型和Ψ-Y型微通道的结构,得到4种微通道:Ψ-Y-M、Y-M、Ψ-Y-phi、Y-phi。研究采用Fluent进行数值模拟,结果表明,phi型结构比Murray型结构底面温度低;Ψ型结构比Y型结构的底面温度分布更均匀。引入性能系数(coefficient of performance,COP)来评价各结构的综合性能,Ψ-Y-M的COP相较于Y-M增长了约3%,Ψ-Y-phi和Y-phi的COP都小于Y-M,前者减小约6%,后者减小约18%。展开更多
为解决现有微通道散热技术存在的不足和电子散热需求多元化的发展趋势,提出一种蛛网型微通道热沉结构,并对其几何结构参数进行了多目标优化来提升蛛网形微通道热沉的综合性能。采用Box-Behnken设计方法,对热沉的槽宽、翅宽、槽深设计变...为解决现有微通道散热技术存在的不足和电子散热需求多元化的发展趋势,提出一种蛛网型微通道热沉结构,并对其几何结构参数进行了多目标优化来提升蛛网形微通道热沉的综合性能。采用Box-Behnken设计方法,对热沉的槽宽、翅宽、槽深设计变量进行响应曲面分析,拟合出蛛网形微通道的温度与压降函数;以拟合后的两函数为目标函数,用多目标粒子群寻优算法得到Pareto解集,并使用逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)从Pareto解集中进行选择。结果表明,Pareto解集为不同状况下的最优解,温度与压降函数的多元统计系数R^(2)分别为0.9996和0.9984,表明拟合函数的精确度高。优化后的结构与原设计相比,不仅平均温度降低了3 K,压降也降低了1514 Pa,综合性能显著提升,表明合理的通道结构设计可以进一步提高微通道热沉的综合性能。展开更多
文摘微通道散热器是应对电子器件散热的有效方法,但目前常规通道存在功耗大等问题。分形结构被认为是质能运输效率最高结构之一。按照Murray定律和“黄金比例phi”设计Y型和Ψ-Y型微通道的结构,得到4种微通道:Ψ-Y-M、Y-M、Ψ-Y-phi、Y-phi。研究采用Fluent进行数值模拟,结果表明,phi型结构比Murray型结构底面温度低;Ψ型结构比Y型结构的底面温度分布更均匀。引入性能系数(coefficient of performance,COP)来评价各结构的综合性能,Ψ-Y-M的COP相较于Y-M增长了约3%,Ψ-Y-phi和Y-phi的COP都小于Y-M,前者减小约6%,后者减小约18%。
文摘为解决现有微通道散热技术存在的不足和电子散热需求多元化的发展趋势,提出一种蛛网型微通道热沉结构,并对其几何结构参数进行了多目标优化来提升蛛网形微通道热沉的综合性能。采用Box-Behnken设计方法,对热沉的槽宽、翅宽、槽深设计变量进行响应曲面分析,拟合出蛛网形微通道的温度与压降函数;以拟合后的两函数为目标函数,用多目标粒子群寻优算法得到Pareto解集,并使用逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)从Pareto解集中进行选择。结果表明,Pareto解集为不同状况下的最优解,温度与压降函数的多元统计系数R^(2)分别为0.9996和0.9984,表明拟合函数的精确度高。优化后的结构与原设计相比,不仅平均温度降低了3 K,压降也降低了1514 Pa,综合性能显著提升,表明合理的通道结构设计可以进一步提高微通道热沉的综合性能。