The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence mod...The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence model and pressure Poisson equation were discretized by upwind difference scheme.A new full implicit difference scheme of 5-point was constructed by using finite volume method and finite difference method.A large sparse matrix with five diagonals was formed and was stored by three arrays of one dimension in a compressed mode.General iterative methods do not work wel1 with large sparse matrix.With algebraic multigrid method(AMG),linear algebraic system of equations was solved and the precision was set at 10-6.The computation results were compared with the experimental results.The results show that the computation results have a good agreement with the experiment data.The precision of computational results and numerical simulation efficiency are greatly improved.展开更多
ABE-KONDOH-NAGANO,ABID,YANG-SHIH and LAUNDER-SHARMA low-Reynolds number turbulence models were applied to simulating unsteady turbulence flow around a square cylinder in different phases flow field and time-averaged u...ABE-KONDOH-NAGANO,ABID,YANG-SHIH and LAUNDER-SHARMA low-Reynolds number turbulence models were applied to simulating unsteady turbulence flow around a square cylinder in different phases flow field and time-averaged unsteady flow field.Meanwhile,drag and lift coefficients of the four different low-Reynolds number turbulence models were analyzed.The simulated results of YANG-SHIH model are close to the large eddy simulation results and experimental results,and they are significantly better than those of ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMR models.The modification of the generation of turbulence kinetic energy is the key factor to a successful simulation for YANG-SHIH model,while the correction of the turbulence near the wall has minor influence on the simulation results.For ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMA models satisfactory simulation results cannot be obtained due to lack of the modification of the generation of turbulence kinetic energy.With the joint force of wall function and the turbulence models with the adoption of corrected swirl stream,flow around a square cylinder can be fully simulated with less grids by the near-wall.展开更多
The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the...The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the velocity and temperature fields. Convergence of series solutions is ensured graphically and numerically. The variations of key parameters on the physical quantities are shown and discussed in detail. Constructed series solutions are compared with the existing solutions in the limiting case and an excellent agreement is noticed. Nusselt numbers are computed with and without magnetic fields. It is observed that the Nusselt number decreases in the presence of magnetic field.展开更多
Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and therm...Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values of mixed convection parameter, concentration buoyancy parameter and Deborah number.展开更多
Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall info...Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall information only. However, detailed analysis is required to find effects of design parameters on the flow distribution. For this aspect, three-dimensional turbulent flow analysis was performed to assess turbulence model performance and effects of upstream pressure and branch pipe geometry. Three different turbulence models of standard k-e model, realizable k-e model and standard k-co yield similar results, indicating small effects of turbulence models on flow characteristics analysis. Geometric variations include area ratio of main and branch pipes, branch pipe diameter, and connection shape of main and branch pipes. Among these parameters, area ratio and branch diameter and shape show strong effect on flow distribution due to high friction and minor loss. Uniform flow distribution is one of common requirements in the branch piping system and this can be achieved with rather high total loss design.展开更多
A numerical analysis of the log-law behavior for the turbulent boundary layer of a wall-bounded flow is performed over a flat plate immersed in three nanofluids(Zn O-water,SiO_(2)-water,TiO_(2)-water).Numerical simula...A numerical analysis of the log-law behavior for the turbulent boundary layer of a wall-bounded flow is performed over a flat plate immersed in three nanofluids(Zn O-water,SiO_(2)-water,TiO_(2)-water).Numerical simulations using CFD code are employed to investigate the boundary layer and the hydrodynamic flow.To validate the current numerical model,measurement points from published works were used,and the compared results were in good compliance.Simulations were carried out for the velocity series of 0.04,0.4 and 4 m/s and nanoparticle concentrations0.1% and 5%.The influence of nanoparticles’ concentration on velocity,temperature profiles,wall shear stress,and turbulent intensity was investigated.The obtained results showed that the viscous sub-layer,the buffer layer,and the loglaw layer along the potential-flow layer could be analyzed based on their curving quality in the regions which have just a single wall distance.It was seen that the viscous sub-layer is the biggest area in comparison with other areas.Alternatively,the section where the temperature changes considerably correspond to the thermal boundary layer’s thickness goes a downward trend when the velocity decreases.The thermal boundary layer gets deep away from the leading edge.However,a rise in the volume fraction of nanoparticles indicated a minor impact on the shear stress developed in the wall.In all cases,the thickness of the boundary layer undergoes a downward trend as the velocity increases,whereas increasing the nanoparticle concentrations would enhance the thickness.More precisely,the log layer is closed with log law,and it is minimal between Y^(+)=50 and Y^(+)=95.The temperature for nanoparticle concentration φ=5%is higher than that for φ=0.1%,in boundary layers,for all studied nanofluids.However,it is established that the behavior is inverted from the value of Y^(+)=1 and the temperature for φ =0.1% is more important than the case of φ =5%.For turbulence intensity peak,this peak exists at Y^(+)=100 for v=4 m/s,Y^(+)=10 for v=0.4 m/s and Y^(+)=8 for v=0.04 m/s.展开更多
In order to correctly predict tube cross section time-smoothed velocity distribution, friction factor and mass transfer behavior, two models for turbulent flow in circular tubes based on classical Prandtl mixing lengt...In order to correctly predict tube cross section time-smoothed velocity distribution, friction factor and mass transfer behavior, two models for turbulent flow in circular tubes based on classical Prandtl mixing length theory and a modified mixing length were established. The results show that the modified mixing length includes the introduction of a damping function for the viscous sublayer and the second-order derivative to approximate eddy velocity. The calculated dimensionless time-smoothed velocity from the model based on Prandtl mixing length is much better than the result from the concept of eddy viscosity. The calculated eddy viscosity from the model based on modified mixing length is much better than the result from the model based on the classical Prandtl mixing length theory. And the friction factor calculated from the model based on the modified mixing length agrees well with the reported empirical relationships.展开更多
The influence of rheological parameters on vortex dynamics and the extent of drag reduction (DR) were deciphered via extensively analyzing the hi-fidelity direct numerical simulation results of the turbulent channel f...The influence of rheological parameters on vortex dynamics and the extent of drag reduction (DR) were deciphered via extensively analyzing the hi-fidelity direct numerical simulation results of the turbulent channel flow with polymer solutions. It has been observed that in all drag reduction regimes from the onset of DR to maximum drag reduction (MDR) limit, the Deborah number is defined as the product of an effective Weissenberg number, and the root mean square streamwise vorticity fluctuation remains O(1) in the near wall region. The ratio of the average lifetime of axial vortices to the vortex rotating duration decreases with increasing DR, and MDR is achieved when these time scales become nearly equal. Based on these observations a simple framework is proposed adequately to describe the influence of polymer additives on the extent of DR from onset to MDR as well as the universality of the MDR in flow systems with polymer additives.展开更多
The turbulent flows through the channels with abrupt cross-sectional changes are common and importantphysical process in nature.For a better prediction of the mean flow and turbulent characteristics for this problem,a...The turbulent flows through the channels with abrupt cross-sectional changes are common and importantphysical process in nature.For a better prediction of the mean flow and turbulent characteristics for this problem,atwo-dimensional depth-averaged numerical model is developed.The model is robust and accurate in reproducing therecirculation flow behind a groyne and turbulent flows in channels with abrupt cross-sectional changes,when com-pared to the available experimental data of mean velocities and turbulence kinetic energy.Our results reveal that theabrupt cross-sectional change of a channel can affect the flow pattern significantly and introduces the complex turbu-lence characteristics.In particular,when the channel has an abrupt expansion,the mean flow pattern is mainly in lon-gitudinal direction with rather small transverse component.Meanwhile,a recirculating region forms behind the expan-sion position and the turbulence has very strong intensity within this region.For the flow in the channel with an ab-rupt contraction,the longitudinal component of the flow is decreased by the obstruction on one side and accelerated onthe other side,whereas the transverse velocity is small.The turbulence is extraordinarily strong in the regions adja-cent to the contraction wall in the narrow channel.In both cases of abrupt cross-sectional changes,the TKE is genera-ted dominantly by the shear of the longitudinal velocities.展开更多
基金Projects(59375211,10771178,10676031) supported by the National Natural Science Foundation of ChinaProject(07A068) supported by the Key Project of Hunan Education CommissionProject(2005CB321702) supported by the National Key Basic Research Program of China
文摘The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence model and pressure Poisson equation were discretized by upwind difference scheme.A new full implicit difference scheme of 5-point was constructed by using finite volume method and finite difference method.A large sparse matrix with five diagonals was formed and was stored by three arrays of one dimension in a compressed mode.General iterative methods do not work wel1 with large sparse matrix.With algebraic multigrid method(AMG),linear algebraic system of equations was solved and the precision was set at 10-6.The computation results were compared with the experimental results.The results show that the computation results have a good agreement with the experiment data.The precision of computational results and numerical simulation efficiency are greatly improved.
基金Project(2006BAJ04B04)supported by the National Science and Technology Pillar Program in the Eleventh Five-year Plan PeriodProject(2006AA05Z229)supported by the National High Technology Research and Development Program of China+1 种基金Project supportedby the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education MinistryProject(06wk3023)supported by Hunan Science and Technology Office
文摘ABE-KONDOH-NAGANO,ABID,YANG-SHIH and LAUNDER-SHARMA low-Reynolds number turbulence models were applied to simulating unsteady turbulence flow around a square cylinder in different phases flow field and time-averaged unsteady flow field.Meanwhile,drag and lift coefficients of the four different low-Reynolds number turbulence models were analyzed.The simulated results of YANG-SHIH model are close to the large eddy simulation results and experimental results,and they are significantly better than those of ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMR models.The modification of the generation of turbulence kinetic energy is the key factor to a successful simulation for YANG-SHIH model,while the correction of the turbulence near the wall has minor influence on the simulation results.For ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMA models satisfactory simulation results cannot be obtained due to lack of the modification of the generation of turbulence kinetic energy.With the joint force of wall function and the turbulence models with the adoption of corrected swirl stream,flow around a square cylinder can be fully simulated with less grids by the near-wall.
文摘The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the velocity and temperature fields. Convergence of series solutions is ensured graphically and numerically. The variations of key parameters on the physical quantities are shown and discussed in detail. Constructed series solutions are compared with the existing solutions in the limiting case and an excellent agreement is noticed. Nusselt numbers are computed with and without magnetic fields. It is observed that the Nusselt number decreases in the presence of magnetic field.
文摘Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values of mixed convection parameter, concentration buoyancy parameter and Deborah number.
基金Project supported by Changwon National University in 2010
文摘Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall information only. However, detailed analysis is required to find effects of design parameters on the flow distribution. For this aspect, three-dimensional turbulent flow analysis was performed to assess turbulence model performance and effects of upstream pressure and branch pipe geometry. Three different turbulence models of standard k-e model, realizable k-e model and standard k-co yield similar results, indicating small effects of turbulence models on flow characteristics analysis. Geometric variations include area ratio of main and branch pipes, branch pipe diameter, and connection shape of main and branch pipes. Among these parameters, area ratio and branch diameter and shape show strong effect on flow distribution due to high friction and minor loss. Uniform flow distribution is one of common requirements in the branch piping system and this can be achieved with rather high total loss design.
基金support he received through General Research Project under the grant number (R.G.P.2/138/42)。
文摘A numerical analysis of the log-law behavior for the turbulent boundary layer of a wall-bounded flow is performed over a flat plate immersed in three nanofluids(Zn O-water,SiO_(2)-water,TiO_(2)-water).Numerical simulations using CFD code are employed to investigate the boundary layer and the hydrodynamic flow.To validate the current numerical model,measurement points from published works were used,and the compared results were in good compliance.Simulations were carried out for the velocity series of 0.04,0.4 and 4 m/s and nanoparticle concentrations0.1% and 5%.The influence of nanoparticles’ concentration on velocity,temperature profiles,wall shear stress,and turbulent intensity was investigated.The obtained results showed that the viscous sub-layer,the buffer layer,and the loglaw layer along the potential-flow layer could be analyzed based on their curving quality in the regions which have just a single wall distance.It was seen that the viscous sub-layer is the biggest area in comparison with other areas.Alternatively,the section where the temperature changes considerably correspond to the thermal boundary layer’s thickness goes a downward trend when the velocity decreases.The thermal boundary layer gets deep away from the leading edge.However,a rise in the volume fraction of nanoparticles indicated a minor impact on the shear stress developed in the wall.In all cases,the thickness of the boundary layer undergoes a downward trend as the velocity increases,whereas increasing the nanoparticle concentrations would enhance the thickness.More precisely,the log layer is closed with log law,and it is minimal between Y^(+)=50 and Y^(+)=95.The temperature for nanoparticle concentration φ=5%is higher than that for φ=0.1%,in boundary layers,for all studied nanofluids.However,it is established that the behavior is inverted from the value of Y^(+)=1 and the temperature for φ =0.1% is more important than the case of φ =5%.For turbulence intensity peak,this peak exists at Y^(+)=100 for v=4 m/s,Y^(+)=10 for v=0.4 m/s and Y^(+)=8 for v=0.04 m/s.
基金Project(20736009) supported by the National Natural Science Foundation of ChinaProject(07JJ6017) supported by the Natural Science Foundation of Hunan Province, China
文摘In order to correctly predict tube cross section time-smoothed velocity distribution, friction factor and mass transfer behavior, two models for turbulent flow in circular tubes based on classical Prandtl mixing length theory and a modified mixing length were established. The results show that the modified mixing length includes the introduction of a damping function for the viscous sublayer and the second-order derivative to approximate eddy velocity. The calculated dimensionless time-smoothed velocity from the model based on Prandtl mixing length is much better than the result from the concept of eddy viscosity. The calculated eddy viscosity from the model based on modified mixing length is much better than the result from the model based on the classical Prandtl mixing length theory. And the friction factor calculated from the model based on the modified mixing length agrees well with the reported empirical relationships.
基金Project (10672069) supported by the National Natural Science Foundation of China
文摘The influence of rheological parameters on vortex dynamics and the extent of drag reduction (DR) were deciphered via extensively analyzing the hi-fidelity direct numerical simulation results of the turbulent channel flow with polymer solutions. It has been observed that in all drag reduction regimes from the onset of DR to maximum drag reduction (MDR) limit, the Deborah number is defined as the product of an effective Weissenberg number, and the root mean square streamwise vorticity fluctuation remains O(1) in the near wall region. The ratio of the average lifetime of axial vortices to the vortex rotating duration decreases with increasing DR, and MDR is achieved when these time scales become nearly equal. Based on these observations a simple framework is proposed adequately to describe the influence of polymer additives on the extent of DR from onset to MDR as well as the universality of the MDR in flow systems with polymer additives.
基金supported,in part,by the National Natural Science Foundation of China(51061130547 and51279120)
文摘The turbulent flows through the channels with abrupt cross-sectional changes are common and importantphysical process in nature.For a better prediction of the mean flow and turbulent characteristics for this problem,atwo-dimensional depth-averaged numerical model is developed.The model is robust and accurate in reproducing therecirculation flow behind a groyne and turbulent flows in channels with abrupt cross-sectional changes,when com-pared to the available experimental data of mean velocities and turbulence kinetic energy.Our results reveal that theabrupt cross-sectional change of a channel can affect the flow pattern significantly and introduces the complex turbu-lence characteristics.In particular,when the channel has an abrupt expansion,the mean flow pattern is mainly in lon-gitudinal direction with rather small transverse component.Meanwhile,a recirculating region forms behind the expan-sion position and the turbulence has very strong intensity within this region.For the flow in the channel with an ab-rupt contraction,the longitudinal component of the flow is decreased by the obstruction on one side and accelerated onthe other side,whereas the transverse velocity is small.The turbulence is extraordinarily strong in the regions adja-cent to the contraction wall in the narrow channel.In both cases of abrupt cross-sectional changes,the TKE is genera-ted dominantly by the shear of the longitudinal velocities.