期刊文献+
共找到5,321篇文章
< 1 2 250 >
每页显示 20 50 100
A review of current studies on the unmanned aerial vehicle-based moving target tracking methods
1
作者 Binbin Yan Yuxin Wei +3 位作者 Shuangxi Liu Wei Huang Ruizhe Feng Xiaoqian Chen 《Defence Technology(防务技术)》 2025年第9期201-219,共19页
Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable track... Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system. 展开更多
关键词 Unmanned aerial vehicle(UAV) tracking methods Moving targets Information prediction tracking strategies Swarm cooperation
在线阅读 下载PDF
Realizing high-speed target tracking by using multi-rate feedforward predictive control for the acquisition, tracking, and pointing system
2
作者 Hang Li Gaoliang Peng +4 位作者 Xiaobiao Shan Mingyuan Zhao Wei Zhang Jinghan Wang Feng Cheng 《Defence Technology(防务技术)》 2025年第7期137-151,共15页
The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit... The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios. 展开更多
关键词 Multi-rate systems Predictive feedforward control target tracking Laser weapon
在线阅读 下载PDF
Localization and tracking of multiple quadrotors with collision avoidance:Theory and experiment
3
作者 Guang Yang Juntong Qi +4 位作者 Mingming Wang Yan Peng Chong Wu Yuan Ping Hailong Huang 《Defence Technology(防务技术)》 2025年第8期338-350,共13页
Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localizatio... Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance. 展开更多
关键词 Multiple quadrotors Collision avoidance target localization tracking Outdoor experiments
在线阅读 下载PDF
Multiple model PHD filter for tracking sharply maneuvering targets using recursive RANSAC based adaptive birth estimation
4
作者 DING Changwen ZHOU Di +2 位作者 ZOU Xinguang DU Runle LIU Jiaqi 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期780-792,共13页
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron... An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation. 展开更多
关键词 multitarget tracking probability hypothesis density(PHD)filter sharply maneuvering targets multiple model adaptive birth intensity estimation
在线阅读 下载PDF
Fast-moving target tracking based on mean shift and frame-difference methods 被引量:32
5
作者 Hongpeng Yin Yi Chai +1 位作者 Simon X. Yang Xiaoyan Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期587-592,共6页
The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrati... The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrating the mean shift algorithm and frame-difference methods. The rough position of the moving tar- get is first located by the direct frame-difference algorithm and three-frame-difference algorithm for the immobile camera scenes and mobile camera scenes, respectively. Then, the mean shift algorithm is used to achieve precise tracking of the target. Several tracking experiments show that the proposed method can effectively track first moving targets and overcome the tracking error accumulation problem. 展开更多
关键词 mean shift frame-difference method target tracking computer vision.
在线阅读 下载PDF
Modified joint probabilistic data association with classification-aided for multitarget tracking 被引量:9
6
作者 Ba Hongxin Cao Lei +1 位作者 He Xinyi Cheng Qun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期434-439,共6页
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are... Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid. 展开更多
关键词 multi-target tracking data association joint probabilistic data association classification information track coalescence maneuvering target.
在线阅读 下载PDF
Modified unscented Kalman filter using modified filter gain and variance scale factor for highly maneuvering target tracking 被引量:10
7
作者 Changyun Liu Penglang Shui +1 位作者 Gang Wei Song Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期380-385,共6页
To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive... To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF. 展开更多
关键词 unscented Kalman filter (UKF) target tracking filter gain maneuvering target NONLINEARITY modified unscented Kalman filter (MUKF).
在线阅读 下载PDF
Bayesian target tracking based on particle filter 被引量:10
8
作者 邓小龙 谢剑英 郭为忠 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期545-549,共5页
For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to ... For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, ere novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one. 展开更多
关键词 nonlinear/non-Gaussian extended Kalman filter particle filter target tracking proposal function.
在线阅读 下载PDF
Sensor Scheduling for Target Tracking in Networks of Active Sensors 被引量:7
9
作者 XIAO Wen-Dong WU Jian-Kang +1 位作者 XIE Li-Hua DONG Liang 《自动化学报》 EI CSCD 北大核心 2006年第6期922-928,共7页
Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two tim... Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two time-division based distributed sensor scheduling schemes are proposed to deal with ISI by scheduling sensors periodically and adaptively respectively. Extended Kalman filter (EKF) is used as the tracking algorithm in distributed manner. Simulation results show that the adaptive sensor scheduling scheme can achieve superior tracking accuracy with faster tracking convergence speed. 展开更多
关键词 Wireless sensor network sensor scheduling target tracking active sensor
在线阅读 下载PDF
Labeled box-particle CPHD filter for multiple extended targets tracking 被引量:4
10
作者 ZOU Zhibin SONG Liping CHENG Xuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期57-67,共11页
In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with ... In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with extended targets, without distinguishing the measurements originating from the true targets or clutter.Based on our recent work on extended box-particle probability hypothesis density(ET-BP-PHD) filter, we propose the extended labeled box-particle cardinalized probability hypothesis density(ET-LBP-CPHD) filter, which relaxes the Poisson assumptions of the extended target probability hypothesis density(PHD) filter in target numbers, and propagates not only the intensity function but also cardinality distribution. Moreover, it provides the identity of individual target by adding labels to box-particles. The proposed filter can improve the precision of estimating target number meanwhile achieve targets' tracks. The effectiveness and reliability of the proposed algorithm are verified by the simulation results. 展开更多
关键词 EXTENDED target MULTIPLE targetS tracking labled boxparticle cardinalized probability HYPOTHESIS density (CPHD).
在线阅读 下载PDF
Multiple-target tracking with adaptive sampling intervals for phased-array radar 被引量:10
11
作者 Zhenkai Zhang Jianjiang Zhou +2 位作者 Fei Wang Weiqiang Liu Hongbing Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第5期760-766,共7页
A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm o... A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar. 展开更多
关键词 target tracking adaptive sampling interval (ASI) particle swarm optimization (PSO) grey relational grade (GRG) phased-array radar.
在线阅读 下载PDF
Maneuvering target tracking of UAV based on MN-DDPG and transfer learning 被引量:15
12
作者 Bo Li Zhi-peng Yang +2 位作者 Da-qing Chen Shi-yang Liang Hao Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期457-466,共10页
Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control proble... Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments. 展开更多
关键词 UAVS Maneuvering target tracking Deep reinforcement learning MN-DDPG Mixed noises Transfer learning
在线阅读 下载PDF
Constrained auxiliary particle filtering for bearings-only maneuvering target tracking 被引量:4
13
作者 ZHANG Hongwei XIE Weixin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第4期684-695,共12页
To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft m... To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft measurement constraints are implemented into the update routine via the1 regularization.Meanwhile,to enhance the sampling diversity and efficiency,the target kinetic features and the latest observations are involved into the evolution.To take advantage of the past and the current measurement information simultaneously,the sub-optimal importance distribution is constructed as a Gaussian mixture consisting of the original and modified priors with the fuzzy weighted factors.As a result,the corresponding weights are more evenly distributed,and the posterior distribution of interest is approximated well with a heavier tailor.Simulation results demonstrate the validity and superiority of the CAPF algorithm in terms of efficiency and robustness. 展开更多
关键词 BEARINGS-ONLY maneuvering target tracking SOFT measurement constraints CONSTRAINED AUXILIARY particle filtering(CAPF)
在线阅读 下载PDF
Target tracking in glint noise using a MCMC particle filter 被引量:5
14
作者 HuHongtao JingZhongliang LiAnping HuShiqiang TianHongwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期305-309,共5页
In radar target tracking application, the observation noise is usually non-Gaussian, which is also referred as glint noise. The performances of conventional trackers degra de severely in the presence of glint noise. A... In radar target tracking application, the observation noise is usually non-Gaussian, which is also referred as glint noise. The performances of conventional trackers degra de severely in the presence of glint noise. An improved particle filter, Markov chain Monte Carlo particle filter (MCMC-PF), is applied to cope with radar target tracking when the measurements are perturbed by glint noise. Tracking performance of the filter is demonstrated in the present of glint noise by computer simulation. 展开更多
关键词 particle filter Markov chain Monte Carlo glint noise target tracking.
在线阅读 下载PDF
Fast density peak-based clustering algorithm for multiple extended target tracking 被引量:4
15
作者 SHEN Xinglin SONG Zhiyong +1 位作者 FAN Hongqi FU Qiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期435-447,共13页
The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influen... The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influence for the tracking results of different partitions is analyzed, and the form of the most informative partition is obtained. Then, a fast density peak-based clustering (FDPC) partitioning algorithm is applied to the measurement set partitioning. Since only one partition of the measurement set is used, the ET-PHD filter based on FDPC partitioning has lower computational complexity than the other ET-PHD filters. As FDPC partitioning is able to remove the spatially close clutter-generated measurements, the ET-PHD filter based on FDPC partitioning has good tracking performance in the scenario with more clutter-generated measurements. The simulation results show that the proposed algorithm can get the most informative partition and obviously reduce computational burden without losing tracking performance. As the number of clutter-generated measurements increased, the ET-PHD filter based on FDPC partitioning has better tracking performance than other ET-PHD filters. The FDPC algorithm will play an important role in the engineering realization of the multiple extended target tracking filter. 展开更多
关键词 FAST DENSITY peak-based clustering (FDPC) MULTIPLE extended target partition probability hypothesis DENSITY (PHD) filter track.
在线阅读 下载PDF
Finite sensor selection algorithm in distributed MIMO radar for joint target tracking and detection 被引量:7
16
作者 ZHANG Haowei XIE Junwei +2 位作者 GE Jiaang ZHANG Zhaojian LU Wenlong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第2期290-302,共13页
Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar sys... Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar system, especially in the hostile environment. In such conditions, an efficient subarray selection strategy is proposed for MIMO radar performing tasks of target tracking and detection. The goal of the proposed strategy is to minimize the worst-case predicted posterior Cramer-Rao lower bound(PCRLB) while maximizing the detection probability for a certain region. It is shown that the subarray selection problem is NP-hard, and a modified particle swarm optimization(MPSO) algorithm is developed as the solution strategy. A large number of simulations verify that the MPSO can provide close performance to the exhaustive search(ES) algorithm. Furthermore, the MPSO has the advantages of simpler structure and lower computational complexity than the multi-start local search algorithm. 展开更多
关键词 distributed MULTIPLE-INPUT multiple-output(MIMO)radar SUBARRAY selection target tracking target detection particle SWARM optimization(PSO)
在线阅读 下载PDF
Passive target tracking with intermittent measurement based on random finite set 被引量:4
17
作者 罗小波 范红旗 +1 位作者 宋志勇 付强 《Journal of Central South University》 SCIE EI CAS 2014年第6期2282-2291,共10页
In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections... In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective. 展开更多
关键词 passive target tracking maritime target joint detection and tracking intermittent measurement random finite set poor observability
在线阅读 下载PDF
Adaptive modified hough transform track initiator forHFSWR tracking of fast and small targets 被引量:3
18
作者 GuoRujiang YuanYeshu QuanTaifan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期316-320,共5页
High frequency surface wave radar (HFSWR) is well proved to have over the horizon (OTH) detection capability to weak aerial targets, such as concealed airplanes or cruise missiles. The most important problem of detect... High frequency surface wave radar (HFSWR) is well proved to have over the horizon (OTH) detection capability to weak aerial targets, such as concealed airplanes or cruise missiles. The most important problem of detection of fast and small targets using HFSWR is earlier warning, i.e. enlargement of detection range oftargets. Therefore, the detection threshold should be decreased as low as possible, but numerous false alarms are brought about at the same time. On this condition, conventional track initiation techniques, which normally require the probability of false alarm to be at the level of 10-6, will initiate enormous false tracks and lead to abnormal operation of tracking system. An adaptive modified hough transform (AMHT) track initiator is proposed accordingly and the relation of detection range to the performance of track initiator is analyzed in this paper. Simulations are performed to confirm the capability of track initiation to fast and small targets in dense clutter by AMHT track initiator. The tolerable probability of false alarm of detector can reach the level of 10 -3 . And it performs better than track initiator based on modified hough transform (MHT). 展开更多
关键词 high frequency surface wave radar track initiation modified hough transform fast targets small targets.
在线阅读 下载PDF
Particle filter initialization in non-linear non-Gaussian radar target tracking 被引量:3
19
作者 Wang Jian Jin Yonggao +2 位作者 Dai Dingzhang Dong Huachun Quan Taifan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期491-496,共6页
When particle filter is applied in radar target tracking, the accuracy of the initial particles greatly effects the results of filtering. For acquiring more accurate initial particles, a new method called “competitio... When particle filter is applied in radar target tracking, the accuracy of the initial particles greatly effects the results of filtering. For acquiring more accurate initial particles, a new method called “competition strategy algorithm” is presented. In this method, initial measurements give birth to several particle groups around them, regularly. Each of the groups is tested several times, separately, in the beginning periods, and the group that has the most number of efficient particles is selected as the initial particles. For this method, sample initial particles selected are on the basis of several measurements instead of only one first measurement, which surely improves the accuracy of initial particles. The method sacrifices initialization time and computation cost for accuracy of initial particles. Results of simulation show that it greatly improves the accuracy of initial particles, which makes the effect of filtering much better. 展开更多
关键词 radar target tracking particle filter initialization.
在线阅读 下载PDF
Prediction-based protocol for mobile target tracking in wireless sensor networks 被引量:3
20
作者 Liang Xue Zhixin Liu Xinping Guan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期347-352,共6页
Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce... Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce energy waste and response time, an improved predictive algorithm–exponential smoothing predictive algorithm (ESPA) is presented. With the aid of an additive proportion and differential (PD) controller, ESPA decreases the system predictive delay effectively. As a recovery mechanism, an optimal searching radius (OSR) algorithm is applied to calculate the optimal radius of the recovery zone. The simulation results validate that the proposed EDPT protocol performes better in terms of track failed ratio, energy waste ratio and enlarged sensing nodes ratio, respectively. 展开更多
关键词 wireless sensor network target tracking protocol predictive algorithm recovery mechanism.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部