This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the...This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.展开更多
基于本地化差分隐私多关系表示上的Star-JOIN查询已得到研究者广泛关注.现有基于OLH机制与层次树结构的Star-JOIN查询算法存在根节点泄露隐私风险、τ-截断机制没有给出如何选择合适τ值等问题.针对现有算法存在的不足,提出一种有效且...基于本地化差分隐私多关系表示上的Star-JOIN查询已得到研究者广泛关注.现有基于OLH机制与层次树结构的Star-JOIN查询算法存在根节点泄露隐私风险、τ-截断机制没有给出如何选择合适τ值等问题.针对现有算法存在的不足,提出一种有效且满足本地化差分隐私的Star-JOIN查询算法LPRR-JOIN(longitudinal path random response for join).该算法充分利用层次树的纵向路径结构与GRR机制,设计一种纵向本地扰动算法LPRR,该算法以所有属性纵向路径上的节点组合作为扰动值域.每个用户把自身元组映射到相应节点组合中,再利用GRR机制对映射后的元组进行本地扰动.为了避免事实表上存在的频率攻击,LPRR-JOIN算法允许每个用户利用阈值τ本地截断自身元组个数,大于τ条元组删减、小于τ条元组补充.为了寻找合适的τ值,LPRR-JOIN算法利用τ-截断带来的偏差与扰动方差构造总体误差函数,通过优化误差目标函数获得τ值;其次结合用户分组策略获得τ值的总体分布,再利用中位数获得合适的τ值.LPRR-JOIN算法与现有算法在3种多关系数据集上进行比较,实验结果表明其响应查询算法优于同类算法.展开更多
Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolvi...Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc.展开更多
为解决许多关键节点识别算法在评估网络节点重要性时,忽视节点与其邻居节点间的相互关系,导致对网络鲁棒性和脆弱性的评估结果不准确的问题,提出一种改良的局部加权密度度量方式CPR-WCCN,旨在以较低的计算成本准确识别复杂网络中的关键...为解决许多关键节点识别算法在评估网络节点重要性时,忽视节点与其邻居节点间的相互关系,导致对网络鲁棒性和脆弱性的评估结果不准确的问题,提出一种改良的局部加权密度度量方式CPR-WCCN,旨在以较低的计算成本准确识别复杂网络中的关键节点.首先,借助节点间的最短路径长度和数量,定义节点间的通信概率序列.其次,通过结合通信概率和相对熵(Communication Probability and Relative Entropy,CPR),将传统的二元邻接矩阵转化为网络归一化相关矩阵.再次,结合加权聚类系数和邻居节点的影响(Weighted Clustering Coefficients and Neighbor Influence,WCCN),得到改进的考虑邻居影响的局部加权密度.最后,为验证CPRWCCN算法的效果,在故意攻击和随机攻击下进行模拟实验,利用传播模型在4种实际网络上对CPR-WCCN与其他5种算法进行对比分析.实验结果表明:当网络遭受故意攻击,导致前15个关键节点失效时,网络的连通性、效率、最大连接子图以及自然连通性等关键指标较随机攻击出现了更显著的下降;相较于其他5种算法,CPR-WCCN算法表现出最优的整体性能,能够准确且高效地识别出网络中的关键节点.展开更多
基金supported by the China Postdotoral Science Foundation(20060401004)
文摘This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.
文摘基于本地化差分隐私多关系表示上的Star-JOIN查询已得到研究者广泛关注.现有基于OLH机制与层次树结构的Star-JOIN查询算法存在根节点泄露隐私风险、τ-截断机制没有给出如何选择合适τ值等问题.针对现有算法存在的不足,提出一种有效且满足本地化差分隐私的Star-JOIN查询算法LPRR-JOIN(longitudinal path random response for join).该算法充分利用层次树的纵向路径结构与GRR机制,设计一种纵向本地扰动算法LPRR,该算法以所有属性纵向路径上的节点组合作为扰动值域.每个用户把自身元组映射到相应节点组合中,再利用GRR机制对映射后的元组进行本地扰动.为了避免事实表上存在的频率攻击,LPRR-JOIN算法允许每个用户利用阈值τ本地截断自身元组个数,大于τ条元组删减、小于τ条元组补充.为了寻找合适的τ值,LPRR-JOIN算法利用τ-截断带来的偏差与扰动方差构造总体误差函数,通过优化误差目标函数获得τ值;其次结合用户分组策略获得τ值的总体分布,再利用中位数获得合适的τ值.LPRR-JOIN算法与现有算法在3种多关系数据集上进行比较,实验结果表明其响应查询算法优于同类算法.
基金supported by the National Natural Science Foundation of China(615730176140149961174162)
文摘Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc.
文摘为解决许多关键节点识别算法在评估网络节点重要性时,忽视节点与其邻居节点间的相互关系,导致对网络鲁棒性和脆弱性的评估结果不准确的问题,提出一种改良的局部加权密度度量方式CPR-WCCN,旨在以较低的计算成本准确识别复杂网络中的关键节点.首先,借助节点间的最短路径长度和数量,定义节点间的通信概率序列.其次,通过结合通信概率和相对熵(Communication Probability and Relative Entropy,CPR),将传统的二元邻接矩阵转化为网络归一化相关矩阵.再次,结合加权聚类系数和邻居节点的影响(Weighted Clustering Coefficients and Neighbor Influence,WCCN),得到改进的考虑邻居影响的局部加权密度.最后,为验证CPRWCCN算法的效果,在故意攻击和随机攻击下进行模拟实验,利用传播模型在4种实际网络上对CPR-WCCN与其他5种算法进行对比分析.实验结果表明:当网络遭受故意攻击,导致前15个关键节点失效时,网络的连通性、效率、最大连接子图以及自然连通性等关键指标较随机攻击出现了更显著的下降;相较于其他5种算法,CPR-WCCN算法表现出最优的整体性能,能够准确且高效地识别出网络中的关键节点.