期刊文献+
共找到229,211篇文章
< 1 2 250 >
每页显示 20 50 100
Self-consistent three-dimensional modeling and simulation of large-scale rectangular surface-wave plasma source 被引量:3
1
作者 蓝朝晖 蓝朝桢 +2 位作者 胡希伟 陈兆权 刘明海 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2412-2419,共8页
A self-consistent and three-dimensional (3D) model of argon discharge in a large-scale rectangular surface-wave plasma (SWP) source is presented in this paper, which is based on the finite-difference time-domain ... A self-consistent and three-dimensional (3D) model of argon discharge in a large-scale rectangular surface-wave plasma (SWP) source is presented in this paper, which is based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The discharge characteristics at an input microwave power of 1200 W and a filling gas pressure of 50 Pa in the SWP source are analyzed. The simulation shows the time evolution of deposited power density at different stages, and the 3D distributions of electron density and temperature in the chamber at steady state. In addition, the results show that there is a peak of plasma density approximately at a vertical distance of 3 cm from the quartz window. 展开更多
关键词 FDTD method surface wave plasma fluid model
在线阅读 下载PDF
Three-dimensional structural models,evolution and petroleum geological significances of transtensional faults in the Ziyang area,central Sichuan Basin,SW China
2
作者 TIAN Fanglei GUO Tonglou +6 位作者 HE Dengfa GU Zhanyu MENG Xianwu WANG Renfu WANG Ying ZHANG Weikang LU Guo 《Petroleum Exploration and Development》 SCIE 2024年第3期604-620,共17页
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,... With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration. 展开更多
关键词 transtensional(strike-slip)fault three-dimensional structural model structural evolution petroleum geological significance Ziyang area Sichuan Basin
在线阅读 下载PDF
Physical Modeling of Reconfigurable Intelligent Surface for Channel Modeling
3
作者 MiaoWei Dou Jianwu +1 位作者 Cui Yijun Yang Zhenyu 《China Communications》 2025年第2期128-142,共15页
In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In... In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In the context of important physical characteristics of the backscattering polarization of RIS,the modeling of the RIS wireless channel requires a tradeoff between complexity and accuracy,as well as usability and simplicity.For channel modeling of RIS systems,RIS is modelled as multi-equivalent virtual base stations(BSs)induced by multi polarized electromagnetic waves from different incident directions.The comparison between test and simulation results demonstrates that the proposed algorithm effectively captures the key characteristics of the general RIS element polarization physical model and provides accurate results. 展开更多
关键词 channel modeling map-based hybrid channel model polarized model Reconfigurable intelligent surface(RIS)
在线阅读 下载PDF
Solubility and Thermodynamic Modeling of 3⁃Nitro⁃1,2,4⁃triazole⁃5⁃one(NTO)in Different Binary Solvents
4
作者 GUO Hao-qi YANG Yu-lin 《含能材料》 北大核心 2025年第3期295-303,共9页
Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging f... Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ). 展开更多
关键词 3-nitro-l 2 4-triazole-5-one(NTO) SOLUBILITY thermodynamic models apparent thermodynamic analysis
在线阅读 下载PDF
Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling 被引量:2
5
作者 金秋雪 刘波 +8 位作者 刘燕 王维维 汪恒 许震 高丹 王青 夏洋洋 宋志棠 封松林 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期128-131,共4页
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ... An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current. 展开更多
关键词 PCRAM cell RESET three-dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element modeling of by in with
在线阅读 下载PDF
In vitro three-dimensional cancer metastasis modeling:Past,present,and future
6
作者 韩伟静 袁伟 +3 位作者 朱江瑞 樊琪慧 屈军乐 刘雳宇 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期360-369,共10页
Metastasis is the leading cause of most cancer deaths, as opposed to dysregulated cell growth of the primary tumor. Molecular mechanisms of metastasis have been studied for decades and the findings have evolved our un... Metastasis is the leading cause of most cancer deaths, as opposed to dysregulated cell growth of the primary tumor. Molecular mechanisms of metastasis have been studied for decades and the findings have evolved our understanding of the progression of malignancy. However, most of the molecular mechanisms fail to address the causes of cancer and its evolutionary origin, demonstrating an inability to find a solution for complete cure of cancer. After being a neglected area of tumor biology for quite some time, recently several studies have focused on the impact of the tumor microenvironment on cancer growth. The importance of the tumor microenvironment is gradually gaining attention, particularly from the per- spective of biophysics. In vitro three-dimensional (3-D) metastatic models are an indispensable platform for investigating the tumor microenvironment, as they mimic the in vivo tumor tissue. In 3-D metastatic in vitro models, static factors such as the mechanical properties, biochemical factors, as well as dynamic factors such as cell-cell, cell-ECM interactions, and fluid shear stress can be studied quantitatively. With increasing focus on basic cancer research and drug development, the in vitro 3-D models offer unique advantages in fundamental and clinical biomedical studies. 展开更多
关键词 cancer metastasis microfluidic chip three-dimensional in vitro model CHEMOTAXIS
在线阅读 下载PDF
Three-Dimensional Numerical Modeling of an Ar-N_2 Plasma Arc Inside a Non-Transferred Torch 被引量:2
7
作者 B.SELVAN K.RAMACHANDRAN +2 位作者 K.P.SREEKUMAR T.K.THIYAGARAJAN P.V.ANANTHAPADMANABHAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第6期679-687,共9页
A three-dimensional numerical model is developed to study the behaviour of an argon-nitrogen plasma arc inside a non-transferred torch. In this model, both the entire cathode and anode nozzle are considered to simulat... A three-dimensional numerical model is developed to study the behaviour of an argon-nitrogen plasma arc inside a non-transferred torch. In this model, both the entire cathode and anode nozzle are considered to simulate the plasma arc. The argon-nitrogen plasma arc is simulated for different arc currents and gas flow rates of argon. Various combinations of arc core radius and arc length, which correspond to a given torch power, are predicted. A most feasible combination of the same, which corresponds to an actual physical situation of the arc inside the torch, is identified using the thermodynamic principle of minimum entropy production for a particular torch power. The effect of the arc current and gas flow rate on the plasma arc characteristics and torch efficiency is explained. The effect of the nitrogen content in the plasma gas on the torch power and efficiency is clearly detected. Predicted torch efficiencies are comparable to the measured ones and the effect of the arc current and gas flow rate on predicted and measured efficiencies is almost similar. The efficiency of the torch, cathode and anode losses and core temperature and velocity at the nozzle exit are reported for five different cases. 展开更多
关键词 plasma arc numerical modeling plasma torch minimum entropy production electro-thermal efficiency
在线阅读 下载PDF
Quantitative modeling, optimization, and verification of ^(63)Nipowered betavoltaic cells based on three-dimensional ZnO nanorod arrays 被引量:3
8
作者 Zan Ding Tong-Xin Jiang +5 位作者 Ren-Rong Zheng Na Wang Li-Feng Zhang Shi-Chao Liu Xin Li Hai-Sheng San 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第11期101-112,共12页
Betavoltaic cells(BCs)are promising self-generating power cells with long life and high power density.However,the low energy conversion efficiency(ECE)has limitations in practical engineering applications.Widebandgap ... Betavoltaic cells(BCs)are promising self-generating power cells with long life and high power density.However,the low energy conversion efficiency(ECE)has limitations in practical engineering applications.Widebandgap semiconductors(WBGSs)with three-dimensional(3-D)nanostructures are ideal candidates for increasing the ECE of BCs.This paper proposes hydrothermally grown ZnO nanorod arrays(ZNRAs)for ^(63)Ni-powered BCs.A quantitative model was established for simulation using the parameter values of the dark characteristics,which were obtained from the experimental measurements for a simulated BC based on a Ni-incorporated ZNRAs structure.Monte Carlo(MC)modeling and simulation were conducted to obtain the values of the β energy deposited in ZNRAs with different nanorod spacings and heights.Through the simulation and optimization of the 3-D ZNRAs and 2-D ZnO bulk structures,the performance of the ^(63)Ni-powered BCs based on both structures was evaluated using a quantitative model.The BCs based on the 3-D ZNRAs structure and 2-D ZnO bulk structure achieved a maximum ECE of 10.1%and 4.69%,respectively,which indicates the significant superiority of 3-D nanostructured WBGSs in increasing the ECE of BCs. 展开更多
关键词 Betavoltaic cells Monte Carlo simulation ZnO nanorod arrays Quantitative model Performance evaluation
在线阅读 下载PDF
Experimental investigation of methane explosion fracturing in bedding shales:Load characteristics and three-dimensional fracture propagation 被引量:1
9
作者 Yu Wang Cheng Zhai +5 位作者 Ting Liu Jizhao Xu Wei Tang Yangfeng Zheng Xinyu Zhu Ning Luo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第10期1365-1383,共19页
Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl... Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology. 展开更多
关键词 Methane in-situ explosion fracturing Bedding shale Fracture propagation three-dimensional reconstruction Crack-generated fines Fractal dimension
在线阅读 下载PDF
Three-dimensional stability calculation method for high and large composite slopes formed by mining stope and inner dump in adjacent open pits 被引量:1
10
作者 Zuchao Liang Dong Wang +4 位作者 Guanghe Li Guangyu Sun Mingyu Yu Dong Xia Chunjian Ding 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期507-520,共14页
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi... The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis. 展开更多
关键词 Composite slope Destabilization mechanism 3D mechanical effect three-dimensional stability Coordinated development distance
在线阅读 下载PDF
Reactive transport modeling constraints on the complex genesis of a lacustrine dolomite reservoir:A case from the Eocene Qaidam Basin,China 被引量:1
11
作者 Ying Xiong Bo Liu +5 位作者 Xiu-Cheng Tan Zheng-Meng Hou Jia-Shun Luo Ya-Chen Xie Kai-Bo Shi Kun-Yu Wu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2240-2256,共17页
Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood.... Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood.This paper presents a case study of the Eocene Qaidam Basin that combines RTM results with petrological and mineralogical evidence.The results show that the Eocene Xiaganchaigou Formation is characterized by mixed siliciclastic-carbonate-evaporite sedimentation in a semiclosed saline lacustrine environment.Periodic evaporation and salinization processes during the syngeneticpenecontemporaneous stage gave rise to the replacive genesis of dolomites and the cyclic enrichment of dolomite in the middle-upper parts of the meter-scale depositional sequences.The successive change in mineral paragenesis from terrigenous clastics to carbonates to evaporites was reconstructed using RTM simulations.Parametric uncertainty analyses further suggest that the evaporation intensity(brine salinity)and particle size of sediments(reactive surface area)were important rate-determining factors in the dolomitization,as shown by the relatively higher reaction rates under conditions of higher brine salinity and fine-grained sediments.Combining the simulation results with measured mineralogical and reservoir physical property data indicates that the preservation of original intergranular pores and the generation of porosity via replacive dolomitization were the major formation mechanisms of the distinctive lacustrine dolomite reservoirs(widespread submicron intercrystalline micropores)in the Eocene Qaidam Basin.The results confirm that RTM can be effectively used in geological studies,can provide a better general understanding of the dolomitizing fluid-rock interactions,and can shed light on the spatiotemporal evolution of mineralogy and porosity during dolomitization and the formation of lacustrine dolomite reservoirs. 展开更多
关键词 Reactive transport modeling Lacustrine dolomite Mineralogy and porosity evolution Reservoir genesis
在线阅读 下载PDF
Simulation-Based Construction of Three-Dimensional Process Model for Punching Cartridge Cases 被引量:1
12
作者 Zhifang Wei Yechang Hu +1 位作者 Wu Lyu Jianzhong Gao 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期276-284,共9页
A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching a... A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching and forming process of cartridge cases are established,and the corresponding simulation result model of each intermediate procedure is obtained by continuously performing the forming process simulation. The simulation model cannot annotate size and process information due to poor interface between DEFORM software and CAD software. Thus,a 3D annotation module is developed with secondary development technology of UG NX software. Consequently,the final process model with dimension and process information is obtained. Then,with the current 3D process management system,the 3D punching and forming process design of cartridge cases can be completed further. An example is also provided to illustrate that the relative error between the simulation process model and the physical model is less than 2%,which proves the validity and reliability of the proposed method in this study. 展开更多
关键词 punching three-dimensional process model finite element simulation three-dimensional annotation
在线阅读 下载PDF
Predicting the probability distribution of Martian rocks mechanical property based on microscale rock mechanical experiments and accurate grain-based modeling 被引量:1
13
作者 Shuohui Yin Yingjie Wang Jingang Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1327-1339,共13页
The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut... The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples. 展开更多
关键词 Probability distribution Martian rocks Microscale rock mechanic experiment Nanoindentation Accurate grain-based modeling
在线阅读 下载PDF
Artificial intelligence-driven radiomics study in cancer:the role of feature engineering and modeling 被引量:1
14
作者 Yuan-Peng Zhang Xin-Yun Zhang +11 位作者 Yu-Ting Cheng Bing Li Xin-Zhi Teng Jiang Zhang Saikit Lam Ta Zhou Zong-Rui Ma Jia-Bao Sheng Victor CWTam Shara WYLee Hong Ge Jing Cai 《Military Medical Research》 SCIE CAS CSCD 2024年第1期115-147,共33页
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of... Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research. 展开更多
关键词 Artificial intelligence Radiomics Feature extraction Feature selection modeling INTERPRETABILITY Multimodalities Head and neck cancer
在线阅读 下载PDF
An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems 被引量:1
15
作者 Ze-Zhong Zhang Wen-Yu Luo Ren-He Zhang 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第8期36-39,共4页
We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forwa... We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forward scattering dominates. At the same time, this model provides an efficiency gain of an order of magnitude or more over two-way coupled-mode models. This model can be applied to three-dimensional range-dependent problems with a slowly varying bathymetry or internal waves. A numerical example of the latter is demonstrated in this work. Comparisons of both accuracy and efficiency between the present model and a benchmark model are also provided. 展开更多
关键词 An Efficient three-dimensional Coupled Normal Mode model and Its Application to Internal Solitary Wave Problems
在线阅读 下载PDF
Assessment of Left Atrial Function by Full Volume Real-time Three-dimensional Echocardiography and Left Atrial Tracking in Essential Hypertension Patients with Different Patterns of Left Ventricular Geometric Models 被引量:9
16
作者 Yang Wang Lin Gao +1 位作者 Jian-bai Li Chao Yu 《Chinese Medical Sciences Journal》 CAS CSCD 2013年第3期152-158,共7页
Objective To evaluate left atrial function in essential hypertension patients with different patterns of left ventricular geometric models by real-time three-dimensional echocardiography (RT-3DE) and left atrial tra... Objective To evaluate left atrial function in essential hypertension patients with different patterns of left ventricular geometric models by real-time three-dimensional echocardiography (RT-3DE) and left atrial tracking (EAT). 展开更多
关键词 essential hypertension left atrial function three-dimensional echocardiography left atrial tracking
在线阅读 下载PDF
Development of a toroidal soft x-ray imaging system and application for investigating three-dimensional plasma on J-TEXT
17
作者 赵传旭 李建超 +9 位作者 张晓卿 王能超 丁永华 杨州军 江中和 严伟 李杨波 毛飞越 任正康 the J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期94-99,共6页
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat... A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma. 展开更多
关键词 SXR imaging J-TEXT tokamak three-dimensional measurement MHD
在线阅读 下载PDF
Through-silicon-via crosstalk model and optimization design for three-dimensional integrated circuits 被引量:3
18
作者 钱利波 朱樟明 +2 位作者 夏银水 丁瑞雪 杨银堂 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期591-596,共6页
Through-silicon-via (TSV) to TSV crosstalk noise is one of the key factors affecting the signal integrity of three- dimensional integrated circuits (3D ICs). Based on the frequency dependent equivalent electrical ... Through-silicon-via (TSV) to TSV crosstalk noise is one of the key factors affecting the signal integrity of three- dimensional integrated circuits (3D ICs). Based on the frequency dependent equivalent electrical parameters for the TSV channel, an analytical crosstalk noise model is established to capture the TSV induced crosstalk noise. The impact of various design parameters including insulation dielectric, via pitch, via height, silicon conductivity, and terminal impedance on the crosstalk noise is analyzed with the proposed model. Two approaches are proposed to alleviate the TSV noise, namely, driver sizing and via shielding, and the SPICE results show 241 rnV and 379 mV reductions in the peak noise voltage, respectively. 展开更多
关键词 three-dimensional integrated circuits through-silicon-via crosstalk driver sizing via shielding
在线阅读 下载PDF
Critical behaviours and magnetic properties of three-dimensional bond and anisotropy dilution Blume-Capel model in the presence of an applied field 被引量:5
19
作者 晏世雷 朱海霞 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第12期3026-3032,共7页
This paper studies the critical behaviours and magnetic properties of three-dimensional bond and anisotropy dilution Blume-Capel model (BCM) in the presence of an applied field within the effective field theory. The... This paper studies the critical behaviours and magnetic properties of three-dimensional bond and anisotropy dilution Blume-Capel model (BCM) in the presence of an applied field within the effective field theory. The trajectory of tricritical point, reentrant transitions and degenerate patterns of anisotropy are obtained both for the bond and the anisotropy dilutions. The global phase diagrams demonstrate unusually reentrant phenomena. The temperature dependences of magnetization curves undergo remarkable spin glass behaviour at low temperatures, and transform from ferromagnetism to paramagnetism at high temperature in applied fields. Temperature dependence of magnetic susceptibility curve is in qualitative agreement with experimental result. 展开更多
关键词 critical behaviours and magnetic properties Blume-Capel model bond and anisotropy dilutions applied field
在线阅读 下载PDF
Mathematical structure of the three-dimensional(3D) Ising model 被引量:1
20
作者 张志东 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期25-39,共15页
An overview of the mathematical structure of the three-dimensional(3D) Ising model is given from the points of view of topology,algebra,and geometry.By analyzing the relationships among transfer matrices of the 3D I... An overview of the mathematical structure of the three-dimensional(3D) Ising model is given from the points of view of topology,algebra,and geometry.By analyzing the relationships among transfer matrices of the 3D Ising model,Reidemeister moves in the knot theory,Yang-Baxter and tetrahedron equations,the following facts are illustrated for the 3D Ising model.1) The complex quaternion basis constructed for the 3D Ising model naturally represents the rotation in a(3+1)-dimensional space-time as a relativistic quantum statistical mechanics model,which is consistent with the 4-fold integrand of the partition function obtained by taking the time average.2) A unitary transformation with a matrix that is a spin representation in 2 n·l·o-space corresponds to a rotation in 2n·l·o-space,which serves to smooth all the crossings in the transfer matrices and contributes the non-trivial topological part of the partition function of the 3D Ising model.3) A tetrahedron relationship would ensure the commutativity of the transfer matrices and the integrability of the 3D Ising model,and its existence is guaranteed by the Jordan algebra and the Jordan-von Neumann-Wigner procedures.4) The unitary transformation for smoothing the crossings in the transfer matrices changes the wave functions by complex phases φx,φy,and φz.The relationship with quantum field and gauge theories and the physical significance of the weight factors are discussed in detail.The conjectured exact solution is compared with numerical results,and the singularities at/near infinite temperature are inspected.The analyticity in β=1/(kBT) of both the hard-core and the Ising models has been proved only for β〉0,not for β=0.Thus the high-temperature series cannot serve as a standard for judging a putative exact solution of the 3D Ising model. 展开更多
关键词 Ising model TOPOLOGY ALGEBRA GEOMETRY
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部