WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o...WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.展开更多
The performance of a material is directly affected by its microstructural development during the solidification phase. Discrete cellular automaton (CA) models are widelyused in materials science to simulate and predic...The performance of a material is directly affected by its microstructural development during the solidification phase. Discrete cellular automaton (CA) models are widelyused in materials science to simulate and predict microstructural growth. This review comprehensively explains the developments and applications of CA in solidification structure simulation, including the theoretical underpinnings, computational procedures, software development, and recent advances. Summarizes the potential and limitations of cellular automata in understanding microstructure evolution during solidification, explores the evolution of microstructures during solidification, and adds to our existing knowledge of cellular automaton theory. Finally, the research trend in simulating the evolution of the solidification microstructure using cellular automaton theory is explored.展开更多
ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced...ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced by the X-ray diffraction and scanning electron microscopy results.The lattice constants,as determined by X-ray diffraction,contradict the disparity in Ta and Zn ion radii,which is attributed to the impact of interstitial defects.This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies.Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence.Furthermore,the factors influencing the bandgap are discussed.展开更多
Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))bat...Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.展开更多
Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte...Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.展开更多
In the process of protecting ferrous materials,aluminum coating usually forms a dense oxide film on the surface of the iron-based alloy.However,the capacity of the sacrificial anode is rather insufficient.In order to ...In the process of protecting ferrous materials,aluminum coating usually forms a dense oxide film on the surface of the iron-based alloy.However,the capacity of the sacrificial anode is rather insufficient.In order to solve this problem,the microstructure and electrochemical corrosion properties of Al-8Si-3Fe-xIn alloy under low chlorine conditions were studied.The results show that indium(In)dissolves to form In^(3+)and In^(+)reverse plating on the surface of the bare substrate to form a passivation film defect.When the In content is high,the segregated In forms an activation point in the form of a cathode phase.In activatesτ_(6)phase to form a micro-couple,which improves the non-uniform corrosion.The In-containing corrosion products at the phase boundary hinder the diffusion of Cl−.With an increase of In content,the self-corrosion potential(Ecorr)of the alloy shifts negatively,and the self-corrosion current density(Jcorr)decreases from 6.477μA/cm^(2)to 1.352μA/cm^(2),and then increases gradually.However,when the In content is 0.1%,the Ecorr of the alloy changes from−0.824 V to−0.932 V,and the Jcorr decreases from 6.477μA/cm^(2)to 4.699μA/cm^(2),suggesting that the use of sacrificial anode will give the best effect.展开更多
Magnesium alloys as medical implant materials necessitate a lower and adjustable corrosion rate for clinical applications.The microstructure and corrosion behavior of AZ31Mn-xEr(x=0.1,0.5,1.2)alloys were systematicall...Magnesium alloys as medical implant materials necessitate a lower and adjustable corrosion rate for clinical applications.The microstructure and corrosion behavior of AZ31Mn-xEr(x=0.1,0.5,1.2)alloys were systematically investigated using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray photoelectron spectroscopy(XPS),combined with Tafel polarization and electrochemical impedance spectroscopy(EIS)analyses.The findings showed that the alloying element Er refined the grain structure during solidification by increasing the nucleation rate and forming a secondary phase of Al_(3)Er with Al.The Er and Mg in the matrix co-oxidize to form a dense MgO/Er_(2)O_(3)composite oxide,preventing the formation of loose magnesium hydroxide/basic magnesium carbonate.The trace alloying element Mn interacts with impurities Fe in the magnesium matrix to form an AlFeMn second phase,reducing micro-galvanic corrosion driving force.Electrochemical testing in a 3.5%NaCl solution demonstrated a marked reduction in corrosion rate from 10.46 mm/a(AZ 31 Mn alloy)to 0.44 mm/a(AZ31Mn-1.2Er alloy).This research offers a reference for searching for corrosion-resistant magnesium alloy and degradable medical magnesium alloy materials.展开更多
This work aimed to(i)understand conventional and pulse gas tungsten arc welding(GTAW)of AZ31B,and(ii)explore high frequency welding(100 Hz-1500 Hz).GTA welding with alternating current(AC)and direct current electrode ...This work aimed to(i)understand conventional and pulse gas tungsten arc welding(GTAW)of AZ31B,and(ii)explore high frequency welding(100 Hz-1500 Hz).GTA welding with alternating current(AC)and direct current electrode positive(DCEP)polarities yielded crack-free partial penetration welds for6 mm thick AZ31B alloy sheet.Welding under direct current electrode negative(DCEN)polarity with identical parameters as that for AC and DCEP resulted in full penetration welds that had microcracks.Defect-free full-penetration welds could be accomplished with pulse GTA welding using DCEN polarity at a pulse frequency of 1 Hz with a pulse duration ratio of 1:1.The resultant DCEN P 1:1 weld metal had a microstructure finer than the conventional DCEN weld.Welds produced with pulse duration ratios of 1:2and 1:4 lacked penetration but had a much finer microstructures because of the lower heat input.The arc constriction by the high frequency pulsing in the Activ Arc■-High frequency(AA-HF)mode welding was responsible for deeper penetration.Welds produced under DCEN pulsing and AA-HF conditions had hardness higher than conventional DCEN,DCEP and AC GTA welds,attributed to the finer microstructure.AA-HF GTA welding produced defect free deeper penetration welds with good microstructural features/mechanical properties and also gave an advantage of 50%enhanced productivity when welded at1500 Hz.展开更多
It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance...It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance of Al alloy fasteners is proposed.7075 Al alloy parts with a fine-grained microstructure were prepared by pre-heat treatment(PHT),combined subsequent equal channel angular pressing(ECAP)and cold upsetting(CU).The corrosion behavior of the specimens was investigated by intergranular corrosion and electrochemical test.Microstructure investigations were carried out by field emission scanning electron microscopy,energy dispersive spectrometer and transmission electron microscopy.The relationship between microstructural evolution and corrosion resistance changes was also explored.The results show that both PHT and ECAP-CU significantly improved the corrosion resistance of the samples and modified the corrosion process.The open circuit potential,corrosion current density and corrosion rate of the alloy on electrochemical test were(-0.812±8.854)×10^(-5) V(vs.SCE),(6.379±0.025)×10^(-6) A/cm^(2) and 0.066 mm/year,respectively,and the intergranular corrosion depth was(557±8)μm.The main factor controlling the corrosion behavior was the microstructure evolution.After PHT,the disappearance of the dendritic structure and the dissolution of the nonequilibrium second phase eliminated the potential difference between the phases,reducing the free energy in the as cast state.When ECAP-CU was used after PHT,the grain refinement was accompanied by a high density of grain boundaries and dislocations,which led to the formation of a denser passivation film on the alloy surface,improving the corrosion resistance in an aggressive environment.展开更多
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t...In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.展开更多
In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition...In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition(LDED).The effects of ultrasonic vibration(UV)and tempering treatment on microstructure evolution,microhardness distribution and mechanical properties of deposition layer were studied in detail.The microstructure of UV assisted LDED sample after tempering is mainly composed of tempered sorbite(TS).Due to the improvement of microstructure inhomogeneity and grains refinement,UV assisted LDED sample with tempering treatment obtains excellent mechanical properties.The ultimate tensile strength(UTS),yield strength(YS)and elongation after breaking(EL)reach 765 MPa,657 MPa and 19.5%,the increase ratios of UTS and YS are 14.5%and 33.8%while maintaining plasticity compared to original LDED sample,respectively.It is obvious that ultrasonic vibration combined with tempering is a potential and effective method to obtain uniform microstructure and excellent mechanical properties in metal laser directed energy deposition field.展开更多
Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technologic...Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research.展开更多
High-entropy alloy composites(HEACs)have attracted significant attention due to their exceptional mechanical properties and chemical stability.By adjusting the content of reinforcing particles in the high-entropy allo...High-entropy alloy composites(HEACs)have attracted significant attention due to their exceptional mechanical properties and chemical stability.By adjusting the content of reinforcing particles in the high-entropy alloy and by employing advanced additive manufacturing techniques,high-performance HEACs can be fabricated.However,there is still considerable room for improvement in their performance.In this study,CoCrFeMnNi HEA powders were used as the matrix,and NiCoFeAlTi high-entropy intermetallic powders were used as the high-entropy reinforcement(HER).CoCrFeMnNi/NiCoFeAlTi HEACs were fabricated using selective laser melting technology.The study results indicate that after aging,the microstructure of HEACs with HER exhibits Al-and Ti-rich nano-oxide precipitates with an orthorhombic CMCM type structure system.After aging at 873 K for 2 h,HEACs with HER achieved excellent overall mechanical properties,with an ultimate tensile strength of 731 MPa.This is attributed to the combined and synergistic effects of precipitation strengthening,dislocation strengthening,and the high lattice distortion caused by high intragranular defects,which provide a multi-scale strengthening and hardening mechanism for the plastic deformation of HEACs with HER.This study demonstrates that aging plays a crucial role in controlling the precipitate phases in complex multi-element alloys.展开更多
The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research...The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed.展开更多
The effect of forging on the microstructure and texture evolution of a high Nb containing Ti-45Al-7Nb-0.3W(at.%)alloy was investigated by X-ray diffractometer(XRD),scanning electron microscopy(SEM),and transmission el...The effect of forging on the microstructure and texture evolution of a high Nb containing Ti-45Al-7Nb-0.3W(at.%)alloy was investigated by X-ray diffractometer(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).The results show that the as-cast alloy is mainly composed of α_(2)/γ lamellar colonies with a mean size of 70μm,but the hot-forged pancake displays a near duplex microstructure(DP).Kinking and bending of lamellar colonies,deformation twinning and dynamic recrystallization(DRX)occur during hot forging.Meanwhile,dense dislocations in theβphase after forging suggest that the high-temperature β phase with a disordered structure is favorable for improving the hot-workability of the alloy.Unlike the common TiAl casting texture,the solidification process of the investigated as-cast alloy with high Nb content is completely via the β phase region,resulting in the formation of a<110>γ fiber texture where the<110>γ aligns parallel to the heat-flow direction.In comparison,the relatively strong<001>and weak<302>texture components in the as-forged alloy are attributed to the deformation twinning.After annealing,static recrystallization occurs at the twin boundary and intersections,which weakens the deformation texture.展开更多
In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to impr...A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation.展开更多
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte...The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.展开更多
The effect of Ti addition on microstructure and mechanical properties of Zn-22Al eutectoid alloy with 0.15 wt%Ti was investigated.It was observed that the presence of Ti changes the morphology of n phase in the alloy....The effect of Ti addition on microstructure and mechanical properties of Zn-22Al eutectoid alloy with 0.15 wt%Ti was investigated.It was observed that the presence of Ti changes the morphology of n phase in the alloy.Addition of Ti to Zn-Al alloy caused the formation of Ti(Zn,Al)_(3);phase.Before applying equal channel angular pressing(ECAP),two times of homogenization treatment were conducted on the alloy.After secondary homogenization,the microstructure consisted of a homogeneous and fine mixture ofαand n phases and the as-cast lamellar structure removed.After homogenization,ECAP was carried out on Ti-containing Zn-22Al alloy.The fraction of high angle grain boundaries increased with increasing the number of ECAP passes.The average grain size reduced from 930 nm after secondary homogenization to 380 nm after 8 passes of ECAP.The texture of the alloy also changed by applying ECAP.Maximum elongation to failure of the homogenized alloy was 135%at a strain rate of 10^(-5)s^(-1)which enhanced to a maximum of 405%at a strain rate of 10^(-3)s^(-1)after 8 passes of ECAP.It was also observed that by conducting ECAP and increasing the number of passes the hardness decreases,which indicates work-softening behavior due to dynamic recovery/recrystallization.展开更多
基金Project(2021YFC2801904)supported by the National Key R&D Program of ChinaProject(KY10100230067)supported by the Basic Product Innovation Research Project,China+3 种基金Projects(52271130,52305344)supported by the National Natural Science Foundation of ChinaProjects(ZR2020ME017,ZR2020QE186)supported by the Natural Science Foundation of Shandong Province,ChinaProjects(AMGM2024F11,AMGM2021F10,AMGM2023F06)supported by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai,ChinaProject(KY90200210015)supported by Leading Scientific Research Project of China National Nuclear Corporation(CNNC),China。
文摘WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.
文摘The performance of a material is directly affected by its microstructural development during the solidification phase. Discrete cellular automaton (CA) models are widelyused in materials science to simulate and predict microstructural growth. This review comprehensively explains the developments and applications of CA in solidification structure simulation, including the theoretical underpinnings, computational procedures, software development, and recent advances. Summarizes the potential and limitations of cellular automata in understanding microstructure evolution during solidification, explores the evolution of microstructures during solidification, and adds to our existing knowledge of cellular automaton theory. Finally, the research trend in simulating the evolution of the solidification microstructure using cellular automaton theory is explored.
基金supported by the National Natural Science Foundation of China(61774140).
文摘ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced by the X-ray diffraction and scanning electron microscopy results.The lattice constants,as determined by X-ray diffraction,contradict the disparity in Ta and Zn ion radii,which is attributed to the impact of interstitial defects.This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies.Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence.Furthermore,the factors influencing the bandgap are discussed.
文摘Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.
基金supported by the National Natural Science Foundation of China(Grant No.61773142).
文摘Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.
基金Projects(52171003,52271005)supported by the National Science and Technology Major Project of ChinaProject(KYCX23_3032)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China。
文摘In the process of protecting ferrous materials,aluminum coating usually forms a dense oxide film on the surface of the iron-based alloy.However,the capacity of the sacrificial anode is rather insufficient.In order to solve this problem,the microstructure and electrochemical corrosion properties of Al-8Si-3Fe-xIn alloy under low chlorine conditions were studied.The results show that indium(In)dissolves to form In^(3+)and In^(+)reverse plating on the surface of the bare substrate to form a passivation film defect.When the In content is high,the segregated In forms an activation point in the form of a cathode phase.In activatesτ_(6)phase to form a micro-couple,which improves the non-uniform corrosion.The In-containing corrosion products at the phase boundary hinder the diffusion of Cl−.With an increase of In content,the self-corrosion potential(Ecorr)of the alloy shifts negatively,and the self-corrosion current density(Jcorr)decreases from 6.477μA/cm^(2)to 1.352μA/cm^(2),and then increases gradually.However,when the In content is 0.1%,the Ecorr of the alloy changes from−0.824 V to−0.932 V,and the Jcorr decreases from 6.477μA/cm^(2)to 4.699μA/cm^(2),suggesting that the use of sacrificial anode will give the best effect.
基金Projects(82171030,81870678)supported by the National Natural Science Foundation of China。
文摘Magnesium alloys as medical implant materials necessitate a lower and adjustable corrosion rate for clinical applications.The microstructure and corrosion behavior of AZ31Mn-xEr(x=0.1,0.5,1.2)alloys were systematically investigated using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray photoelectron spectroscopy(XPS),combined with Tafel polarization and electrochemical impedance spectroscopy(EIS)analyses.The findings showed that the alloying element Er refined the grain structure during solidification by increasing the nucleation rate and forming a secondary phase of Al_(3)Er with Al.The Er and Mg in the matrix co-oxidize to form a dense MgO/Er_(2)O_(3)composite oxide,preventing the formation of loose magnesium hydroxide/basic magnesium carbonate.The trace alloying element Mn interacts with impurities Fe in the magnesium matrix to form an AlFeMn second phase,reducing micro-galvanic corrosion driving force.Electrochemical testing in a 3.5%NaCl solution demonstrated a marked reduction in corrosion rate from 10.46 mm/a(AZ 31 Mn alloy)to 0.44 mm/a(AZ31Mn-1.2Er alloy).This research offers a reference for searching for corrosion-resistant magnesium alloy and degradable medical magnesium alloy materials.
文摘This work aimed to(i)understand conventional and pulse gas tungsten arc welding(GTAW)of AZ31B,and(ii)explore high frequency welding(100 Hz-1500 Hz).GTA welding with alternating current(AC)and direct current electrode positive(DCEP)polarities yielded crack-free partial penetration welds for6 mm thick AZ31B alloy sheet.Welding under direct current electrode negative(DCEN)polarity with identical parameters as that for AC and DCEP resulted in full penetration welds that had microcracks.Defect-free full-penetration welds could be accomplished with pulse GTA welding using DCEN polarity at a pulse frequency of 1 Hz with a pulse duration ratio of 1:1.The resultant DCEN P 1:1 weld metal had a microstructure finer than the conventional DCEN weld.Welds produced with pulse duration ratios of 1:2and 1:4 lacked penetration but had a much finer microstructures because of the lower heat input.The arc constriction by the high frequency pulsing in the Activ Arc■-High frequency(AA-HF)mode welding was responsible for deeper penetration.Welds produced under DCEN pulsing and AA-HF conditions had hardness higher than conventional DCEN,DCEP and AC GTA welds,attributed to the finer microstructure.AA-HF GTA welding produced defect free deeper penetration welds with good microstructural features/mechanical properties and also gave an advantage of 50%enhanced productivity when welded at1500 Hz.
基金Project(52275350)supported by the National Natural Science Foundation of ChinaProject(0301006)supported by International Cooperative Scientific Research Platform of SUES,China。
文摘It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance of Al alloy fasteners is proposed.7075 Al alloy parts with a fine-grained microstructure were prepared by pre-heat treatment(PHT),combined subsequent equal channel angular pressing(ECAP)and cold upsetting(CU).The corrosion behavior of the specimens was investigated by intergranular corrosion and electrochemical test.Microstructure investigations were carried out by field emission scanning electron microscopy,energy dispersive spectrometer and transmission electron microscopy.The relationship between microstructural evolution and corrosion resistance changes was also explored.The results show that both PHT and ECAP-CU significantly improved the corrosion resistance of the samples and modified the corrosion process.The open circuit potential,corrosion current density and corrosion rate of the alloy on electrochemical test were(-0.812±8.854)×10^(-5) V(vs.SCE),(6.379±0.025)×10^(-6) A/cm^(2) and 0.066 mm/year,respectively,and the intergranular corrosion depth was(557±8)μm.The main factor controlling the corrosion behavior was the microstructure evolution.After PHT,the disappearance of the dendritic structure and the dissolution of the nonequilibrium second phase eliminated the potential difference between the phases,reducing the free energy in the as cast state.When ECAP-CU was used after PHT,the grain refinement was accompanied by a high density of grain boundaries and dislocations,which led to the formation of a denser passivation film on the alloy surface,improving the corrosion resistance in an aggressive environment.
基金National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22)。
文摘In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.
基金Project(2021YFC2801904) supported by the National Key R&D Program of ChinaProject(KY10100230067) supported by the Basic Product Innovation Research Project,China+3 种基金Projects(52271130,52305344) supported by the National Natural Science Foundation of ChinaProject(ZR2022QE073) supported by the Natural Science Foundation of Shandong Province,ChinaProject(AMGM2021F01) supported by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai,ChinaProject(KY90200210015) supported by Leading Scientific Research Project of CNNC,China。
文摘In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition(LDED).The effects of ultrasonic vibration(UV)and tempering treatment on microstructure evolution,microhardness distribution and mechanical properties of deposition layer were studied in detail.The microstructure of UV assisted LDED sample after tempering is mainly composed of tempered sorbite(TS).Due to the improvement of microstructure inhomogeneity and grains refinement,UV assisted LDED sample with tempering treatment obtains excellent mechanical properties.The ultimate tensile strength(UTS),yield strength(YS)and elongation after breaking(EL)reach 765 MPa,657 MPa and 19.5%,the increase ratios of UTS and YS are 14.5%and 33.8%while maintaining plasticity compared to original LDED sample,respectively.It is obvious that ultrasonic vibration combined with tempering is a potential and effective method to obtain uniform microstructure and excellent mechanical properties in metal laser directed energy deposition field.
文摘Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research.
基金Project supported by ClassⅢPeak Discipline of Shanghai-Materials Science and Engineering(High-Energy Beam Intelligent Processing and Green Manufacturing),China。
文摘High-entropy alloy composites(HEACs)have attracted significant attention due to their exceptional mechanical properties and chemical stability.By adjusting the content of reinforcing particles in the high-entropy alloy and by employing advanced additive manufacturing techniques,high-performance HEACs can be fabricated.However,there is still considerable room for improvement in their performance.In this study,CoCrFeMnNi HEA powders were used as the matrix,and NiCoFeAlTi high-entropy intermetallic powders were used as the high-entropy reinforcement(HER).CoCrFeMnNi/NiCoFeAlTi HEACs were fabricated using selective laser melting technology.The study results indicate that after aging,the microstructure of HEACs with HER exhibits Al-and Ti-rich nano-oxide precipitates with an orthorhombic CMCM type structure system.After aging at 873 K for 2 h,HEACs with HER achieved excellent overall mechanical properties,with an ultimate tensile strength of 731 MPa.This is attributed to the combined and synergistic effects of precipitation strengthening,dislocation strengthening,and the high lattice distortion caused by high intragranular defects,which provide a multi-scale strengthening and hardening mechanism for the plastic deformation of HEACs with HER.This study demonstrates that aging plays a crucial role in controlling the precipitate phases in complex multi-element alloys.
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
文摘The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed.
基金Projects(52274402,52174381)supported by the National Natural Science Foundation of China。
文摘The effect of forging on the microstructure and texture evolution of a high Nb containing Ti-45Al-7Nb-0.3W(at.%)alloy was investigated by X-ray diffractometer(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).The results show that the as-cast alloy is mainly composed of α_(2)/γ lamellar colonies with a mean size of 70μm,but the hot-forged pancake displays a near duplex microstructure(DP).Kinking and bending of lamellar colonies,deformation twinning and dynamic recrystallization(DRX)occur during hot forging.Meanwhile,dense dislocations in theβphase after forging suggest that the high-temperature β phase with a disordered structure is favorable for improving the hot-workability of the alloy.Unlike the common TiAl casting texture,the solidification process of the investigated as-cast alloy with high Nb content is completely via the β phase region,resulting in the formation of a<110>γ fiber texture where the<110>γ aligns parallel to the heat-flow direction.In comparison,the relatively strong<001>and weak<302>texture components in the as-forged alloy are attributed to the deformation twinning.After annealing,static recrystallization occurs at the twin boundary and intersections,which weakens the deformation texture.
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.
基金National Key Laboratory of Science and Technology on Materials under Shock and Impact(Grant No.WDZC2022-4)to provide fund for conducting experiments。
文摘A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation.
基金Project(202302AB080024)supported by the Department of Science and Technology of Yunnan Province,China。
文摘The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.
文摘The effect of Ti addition on microstructure and mechanical properties of Zn-22Al eutectoid alloy with 0.15 wt%Ti was investigated.It was observed that the presence of Ti changes the morphology of n phase in the alloy.Addition of Ti to Zn-Al alloy caused the formation of Ti(Zn,Al)_(3);phase.Before applying equal channel angular pressing(ECAP),two times of homogenization treatment were conducted on the alloy.After secondary homogenization,the microstructure consisted of a homogeneous and fine mixture ofαand n phases and the as-cast lamellar structure removed.After homogenization,ECAP was carried out on Ti-containing Zn-22Al alloy.The fraction of high angle grain boundaries increased with increasing the number of ECAP passes.The average grain size reduced from 930 nm after secondary homogenization to 380 nm after 8 passes of ECAP.The texture of the alloy also changed by applying ECAP.Maximum elongation to failure of the homogenized alloy was 135%at a strain rate of 10^(-5)s^(-1)which enhanced to a maximum of 405%at a strain rate of 10^(-3)s^(-1)after 8 passes of ECAP.It was also observed that by conducting ECAP and increasing the number of passes the hardness decreases,which indicates work-softening behavior due to dynamic recovery/recrystallization.