Objective To evaluate the effectiveness of three-dimensional computed tomography (3D-CT) guided radiofi'equency trigeminal rhizotomy (RF-TR) in treatment of idiopathic trigeminal neuralgia (1TN). Methods From ...Objective To evaluate the effectiveness of three-dimensional computed tomography (3D-CT) guided radiofi'equency trigeminal rhizotomy (RF-TR) in treatment of idiopathic trigeminal neuralgia (1TN). Methods From 1999 to 2001, 18 patients with ITN were treated with percutaneous controlled RF-TR. Intraoperative 3D-CT scanning was performed to guide the trajectory of the puncture. After correction of the needle tip according to the CT scans and stimulation effects, 2 to 5 lesions were made for a duration of 60-90 seconds at a temperature of 60℃ to 75℃ depending on the pain distribution and the age of patient. The needles located in foramen ovale. Pain alleviated immediately with no serious complication in all patients. The patients were followed up for an average of 31.5 months (range 24-41 months). Acute pain relief was experienced by 17 patients after the procedure, reaching an initial success rate of 94.4%. Early (〈 6 months) pain recurrence was observed in 2 patients (11.1%), whereas late (〉 6 months) recurrence was reported in 3 patients (16.7%). Thirteen patients had complete pain control, with no need for medication thereafter. Five cases experienced partial pain relief, but required medication at a lower dose than in the preoperative period. Conclusion 3D-CT foramen ovale locations can raise the successful rate of puncture, enhance the safety, and reduce the incidence rate of complication.展开更多
Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the ...Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.展开更多
The geometric and spatial characteristics of pore structures determine the permeability and water retention of soils, which have important effects on soil functional diversity and ecological restoration. Until recentl...The geometric and spatial characteristics of pore structures determine the permeability and water retention of soils, which have important effects on soil functional diversity and ecological restoration. Until recently, there have not been tools and methods to visually and quantitatively describe the characteristics of soil pores. To solve this problem, this research reconstructs the geometry and spatial distribution of soil pores by the marching cubes method, texture mapping method and the ray casting method widely used in literature. The objectives were to explore an optimal method for three-dimensional visualization of soil pore structure by comparing the robustness of the three methods on soil CT images with single pore structure and porosity ranging from low (2–5%) to high (12–18%), and to evaluate the reconstruction performance of the three methods with different geometric features. The results demonstrate that there are aliases (jagged edges) and deficiency at the boundaries of the model reconstructed by the marching cubes method and pore volumes are smaller than the ground truth, whereas the results of the texture mapping method lack the details of pore structures. For all the soil images, the ray casting method is preferable since it better preserves the pore characteristics of the ground truth. Furthermore, the ray casting method produced the best soil pore model with higher rendering speed and lower memory consumption. Therefore, the ray casting method provides a more advanced method for visualization of pore structures and provides an optional technique for the study of the transport of moisture and the exchange of air in soil.展开更多
Object identification and three-dimensional reconstruction techniques are always attractive research interests in machine vision,virtual reality,augmented reality,and biomedical engineering.Optical computing metasurfa...Object identification and three-dimensional reconstruction techniques are always attractive research interests in machine vision,virtual reality,augmented reality,and biomedical engineering.Optical computing metasurface,as a two-dimensional artificial design component,has displayed the supernormal character of controlling phase,amplitude,polarization,and frequency distributions of the light beam,capable of performing mathematical operations on the input light field.Here,we propose and demonstrate an all-optical object identification technique based on optical computing metasurface,and apply it to 3D reconstruction.Unlike traditional mechanisms,this scheme reduces memory consumption in the processing of the contour surface extraction.The identification and reconstruction of experimental results from high-contrast and low-contrast objects agree well with the real objects.The exploration of the all-optical object identification and 3D reconstruction techniques provides potential applications of high efficiencies,low consumption,and compact systems.展开更多
Three-dimensional(3 D)reconstruction of icosahedral viruses has played a crucial role in the development of cryoelectron microscopy single-particle reconstruction,with many cryo-electron microscopy techniques first es...Three-dimensional(3 D)reconstruction of icosahedral viruses has played a crucial role in the development of cryoelectron microscopy single-particle reconstruction,with many cryo-electron microscopy techniques first established for structural studies of icosahedral viruses,owing to their high symmetry and large mass.This review summarizes the computational methods for icosahedral and symmetry-mismatch reconstruction of viruses,as well as the likely challenges and bottlenecks in virus reconstruction,such as symmetry mismatch reconstruction,contrast transformation function(CTF)correction,and particle distortion.展开更多
The resistive random access memory(RRAM)has stimulated a variety of promising applications including programmable analog circuit,massive data storage,neuromorphic computing,etc.These new emerging applications have hug...The resistive random access memory(RRAM)has stimulated a variety of promising applications including programmable analog circuit,massive data storage,neuromorphic computing,etc.These new emerging applications have huge demands on high integration density and low power consumption.The cross-point configuration or passive array,which offers the smallest footprint of cell size and feasible capability of multi-layer stacking,has received broad attention from the research community.In such array,correct operation of reading and writing on a cell relies on effective elimination of the sneaking current coming from the neighboring cells.This target requires nonlinear I-V characteristics of the memory cell,which can be realized by either adding separate selector or developing implicit build-in nonlinear cells.The performance of a passive array largely depends on the cell nonlinearity,reliability,on/off ratio,line resistance,thermal coupling,etc.This article provides a comprehensive review on the progress achieved concerning 3D RRAM integration.First,the authors start with a brief overview of the associative problems in passive array and the category of 3D architectures.Next,the state of the arts on the development of various selector devices and self-selective cells are presented.Key parameters that influence the device nonlinearity and current density are outlined according to the corresponding working principles.Then,the reliability issues in 3D array are summarized in terms of uniformity,endurance,retention,and disturbance.Subsequently,scaling issue and thermal crosstalk in 3D memory array are thoroughly discussed,and applications of 3D RRAM beyond storage,such as neuromorphic computing and CMOL circuit are discussed later.Summary and outlooks are given in the final.展开更多
Objective To evaluate the clinical features,diagnosis,treatment,and outcome of intralobar pulmonary sequestration (ILS). Methods Patients who were diagnosed with ILS in our hospital between January 1988 and January 20...Objective To evaluate the clinical features,diagnosis,treatment,and outcome of intralobar pulmonary sequestration (ILS). Methods Patients who were diagnosed with ILS in our hospital between January 1988 and January 2009 were retrospectively reviewed. We recorded the clinical symptoms,imaging findings,operative technique,complications,and outcome of these patients. Results Forty-seven patients (25 men and 22 women) with an average age of 32.3 years were enrolled. Forty-two patients had symptoms including cough and hemoptysis. Chest X-ray,computed tomography (CT),magnetic resonance imaging (MRI),and angiography were performed. Thoracotomy was performed in 45 patients,while thoracoscopy was performed in 2 patients. Lobectomy was the most common treatment procedure. Massive bleeding developed in 2 patients due to injury of aberrant supplying artery intraoperatively,1 patient had atrial fibrillation,1 patient had thrombosis of upper extremity postoperatively. All patients were confirmed the diagnosis pathologically,4 accompanied with bronchogenic cyst,15 with bronchiectasis,8 with infection,2 with aspergilloma,and 1 with carcinoid. No late complications occurred. Conclusions ILS is rare,surgery is recommended because some patients may have potential severe complications. Contrast enhanced CT and three-dimensional reconstruction is the best diagnostic method. Both thoracotomy and thoracoscopy are appropriate for the selected candidates.展开更多
Underwater acoustic models are effective tools for simulating underwater sound propagation.More than 50 years of research have been conducted on the theory and computational models of sound propagation in the ocean.Un...Underwater acoustic models are effective tools for simulating underwater sound propagation.More than 50 years of research have been conducted on the theory and computational models of sound propagation in the ocean.Unfortunately,underwater sound propagation models were unable to solve practical large-scale three-dimensional problems for many years due to limited computing power and hardware conditions.Since the mid-1980s,research on high performance computing for acoustic propagation models in the field of underwater acoustics has flourished with the emergence of high-performance computing platforms,enabling underwater acoustic propagation models to solve many practical application problems that could not be solved before.In this paper,the contributions of research on high-performance computing for underwater acoustic propagation models since the 1980s are thoroughly reviewed and the possible development directions for the future are outlined.展开更多
The numerical simulation of a three-dimensional semiconductor device is a fundamental problem in information science. The mathematical model is defined by an initialboundary nonlinear system of four partial differenti...The numerical simulation of a three-dimensional semiconductor device is a fundamental problem in information science. The mathematical model is defined by an initialboundary nonlinear system of four partial differential equations: an elliptic equation for electric potential, two convection-diffusion equations for electron concentration and hole concentration, and a heat conduction equation for temperature. The first equation is solved by the conservative block-centered method. The concentrations and temperature are computed by the block-centered upwind difference method on a changing mesh, where the block-centered method and upwind approximation are used to discretize the diffusion and convection, respectively. The computations on a changing mesh show very well the local special properties nearby the P-N junction. The upwind scheme is applied to approximate the convection, and numerical dispersion and nonphysical oscillation are avoided. The block-centered difference computes concentrations, temperature, and their adjoint vector functions simultaneously.The local conservation of mass, an important rule in the numerical simulation of a semiconductor device, is preserved during the computations. An optimal order convergence is obtained. Numerical examples are provided to show efficiency and application.展开更多
文摘Objective To evaluate the effectiveness of three-dimensional computed tomography (3D-CT) guided radiofi'equency trigeminal rhizotomy (RF-TR) in treatment of idiopathic trigeminal neuralgia (1TN). Methods From 1999 to 2001, 18 patients with ITN were treated with percutaneous controlled RF-TR. Intraoperative 3D-CT scanning was performed to guide the trajectory of the puncture. After correction of the needle tip according to the CT scans and stimulation effects, 2 to 5 lesions were made for a duration of 60-90 seconds at a temperature of 60℃ to 75℃ depending on the pain distribution and the age of patient. The needles located in foramen ovale. Pain alleviated immediately with no serious complication in all patients. The patients were followed up for an average of 31.5 months (range 24-41 months). Acute pain relief was experienced by 17 patients after the procedure, reaching an initial success rate of 94.4%. Early (〈 6 months) pain recurrence was observed in 2 patients (11.1%), whereas late (〉 6 months) recurrence was reported in 3 patients (16.7%). Thirteen patients had complete pain control, with no need for medication thereafter. Five cases experienced partial pain relief, but required medication at a lower dose than in the preoperative period. Conclusion 3D-CT foramen ovale locations can raise the successful rate of puncture, enhance the safety, and reduce the incidence rate of complication.
基金Supported by the Hundred Talents Program of Chinese Academy of Sciencesthe National Basic Research Program of China under Grant No 2014CB339803+2 种基金the Major National Development Project of Scientific Instrument and Equipment under Grant No2011YQ150021the National Natural Science Foundation of China under Grant Nos 61575214,61574155,61404149 and 61404150the Shanghai Municipal Commission of Science and Technology under Grant Nos 14530711300,15560722000 and 15ZR1447500
文摘Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.
基金supported by the National Natural Science Foundation Project(41501283)Beijing Science and Technology Plan Project(Z161100000916012)+2 种基金the National Key Research and Development Program(2017YFD0600901)Special Fund for Beijing Common Construction Projectthe Fundamental Research Funds for the Central Universities(2015ZCQ-GX-04)
文摘The geometric and spatial characteristics of pore structures determine the permeability and water retention of soils, which have important effects on soil functional diversity and ecological restoration. Until recently, there have not been tools and methods to visually and quantitatively describe the characteristics of soil pores. To solve this problem, this research reconstructs the geometry and spatial distribution of soil pores by the marching cubes method, texture mapping method and the ray casting method widely used in literature. The objectives were to explore an optimal method for three-dimensional visualization of soil pore structure by comparing the robustness of the three methods on soil CT images with single pore structure and porosity ranging from low (2–5%) to high (12–18%), and to evaluate the reconstruction performance of the three methods with different geometric features. The results demonstrate that there are aliases (jagged edges) and deficiency at the boundaries of the model reconstructed by the marching cubes method and pore volumes are smaller than the ground truth, whereas the results of the texture mapping method lack the details of pore structures. For all the soil images, the ray casting method is preferable since it better preserves the pore characteristics of the ground truth. Furthermore, the ray casting method produced the best soil pore model with higher rendering speed and lower memory consumption. Therefore, the ray casting method provides a more advanced method for visualization of pore structures and provides an optional technique for the study of the transport of moisture and the exchange of air in soil.
基金support from the National Natural Science Foundation of China(Grant Nos.12174097 and 12304321)the Natural Science Foundation of Hunan Province(Grant Nos.2021JJ10008 and 2023JJ40202)the Research Foundation of Education Bureau of Hunan Province(Grant No.22B0871).
文摘Object identification and three-dimensional reconstruction techniques are always attractive research interests in machine vision,virtual reality,augmented reality,and biomedical engineering.Optical computing metasurface,as a two-dimensional artificial design component,has displayed the supernormal character of controlling phase,amplitude,polarization,and frequency distributions of the light beam,capable of performing mathematical operations on the input light field.Here,we propose and demonstrate an all-optical object identification technique based on optical computing metasurface,and apply it to 3D reconstruction.Unlike traditional mechanisms,this scheme reduces memory consumption in the processing of the contour surface extraction.The identification and reconstruction of experimental results from high-contrast and low-contrast objects agree well with the real objects.The exploration of the all-optical object identification and 3D reconstruction techniques provides potential applications of high efficiencies,low consumption,and compact systems.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFA0501100)the National Natural Science Foundation of China(Grant Nos.91530321,31570742,and 31570727)Science and Technology Planning Project of Hunan Province,China(Grant No.2017RS3033)
文摘Three-dimensional(3 D)reconstruction of icosahedral viruses has played a crucial role in the development of cryoelectron microscopy single-particle reconstruction,with many cryo-electron microscopy techniques first established for structural studies of icosahedral viruses,owing to their high symmetry and large mass.This review summarizes the computational methods for icosahedral and symmetry-mismatch reconstruction of viruses,as well as the likely challenges and bottlenecks in virus reconstruction,such as symmetry mismatch reconstruction,contrast transformation function(CTF)correction,and particle distortion.
基金the National Key R&D Program of China(Grant Nos.2018YFB0407501 and 2016YFA0201800)the National Natural Science Foundation of China(Grant Nos.61804173,61922083,61804167,61904200,and 61821091)the fourth China Association for Science and Technology Youth Talent Support Project(Grant No.2019QNRC001).
文摘The resistive random access memory(RRAM)has stimulated a variety of promising applications including programmable analog circuit,massive data storage,neuromorphic computing,etc.These new emerging applications have huge demands on high integration density and low power consumption.The cross-point configuration or passive array,which offers the smallest footprint of cell size and feasible capability of multi-layer stacking,has received broad attention from the research community.In such array,correct operation of reading and writing on a cell relies on effective elimination of the sneaking current coming from the neighboring cells.This target requires nonlinear I-V characteristics of the memory cell,which can be realized by either adding separate selector or developing implicit build-in nonlinear cells.The performance of a passive array largely depends on the cell nonlinearity,reliability,on/off ratio,line resistance,thermal coupling,etc.This article provides a comprehensive review on the progress achieved concerning 3D RRAM integration.First,the authors start with a brief overview of the associative problems in passive array and the category of 3D architectures.Next,the state of the arts on the development of various selector devices and self-selective cells are presented.Key parameters that influence the device nonlinearity and current density are outlined according to the corresponding working principles.Then,the reliability issues in 3D array are summarized in terms of uniformity,endurance,retention,and disturbance.Subsequently,scaling issue and thermal crosstalk in 3D memory array are thoroughly discussed,and applications of 3D RRAM beyond storage,such as neuromorphic computing and CMOL circuit are discussed later.Summary and outlooks are given in the final.
文摘Objective To evaluate the clinical features,diagnosis,treatment,and outcome of intralobar pulmonary sequestration (ILS). Methods Patients who were diagnosed with ILS in our hospital between January 1988 and January 2009 were retrospectively reviewed. We recorded the clinical symptoms,imaging findings,operative technique,complications,and outcome of these patients. Results Forty-seven patients (25 men and 22 women) with an average age of 32.3 years were enrolled. Forty-two patients had symptoms including cough and hemoptysis. Chest X-ray,computed tomography (CT),magnetic resonance imaging (MRI),and angiography were performed. Thoracotomy was performed in 45 patients,while thoracoscopy was performed in 2 patients. Lobectomy was the most common treatment procedure. Massive bleeding developed in 2 patients due to injury of aberrant supplying artery intraoperatively,1 patient had atrial fibrillation,1 patient had thrombosis of upper extremity postoperatively. All patients were confirmed the diagnosis pathologically,4 accompanied with bronchogenic cyst,15 with bronchiectasis,8 with infection,2 with aspergilloma,and 1 with carcinoid. No late complications occurred. Conclusions ILS is rare,surgery is recommended because some patients may have potential severe complications. Contrast enhanced CT and three-dimensional reconstruction is the best diagnostic method. Both thoracotomy and thoracoscopy are appropriate for the selected candidates.
基金Project supported by the Fund for Key Laboratory of National Defense Science and Technology of Underwater Acoustic Countermeasure Technology(Grant No.6412214200403)the National Defense Fundamental Scientific Research Program(Grant No.JCKY2020550C011)the Special Independent Scientific Research Program of National University of Defense Technology(Grant No.ZZKY-ZX-04-01)。
文摘Underwater acoustic models are effective tools for simulating underwater sound propagation.More than 50 years of research have been conducted on the theory and computational models of sound propagation in the ocean.Unfortunately,underwater sound propagation models were unable to solve practical large-scale three-dimensional problems for many years due to limited computing power and hardware conditions.Since the mid-1980s,research on high performance computing for acoustic propagation models in the field of underwater acoustics has flourished with the emergence of high-performance computing platforms,enabling underwater acoustic propagation models to solve many practical application problems that could not be solved before.In this paper,the contributions of research on high-performance computing for underwater acoustic propagation models since the 1980s are thoroughly reviewed and the possible development directions for the future are outlined.
基金supported the Natural Science Foundation of Shandong Province(ZR2016AM08)Natural Science Foundation of Hunan Province(2018JJ2028)National Natural Science Foundation of China(11871312).
文摘The numerical simulation of a three-dimensional semiconductor device is a fundamental problem in information science. The mathematical model is defined by an initialboundary nonlinear system of four partial differential equations: an elliptic equation for electric potential, two convection-diffusion equations for electron concentration and hole concentration, and a heat conduction equation for temperature. The first equation is solved by the conservative block-centered method. The concentrations and temperature are computed by the block-centered upwind difference method on a changing mesh, where the block-centered method and upwind approximation are used to discretize the diffusion and convection, respectively. The computations on a changing mesh show very well the local special properties nearby the P-N junction. The upwind scheme is applied to approximate the convection, and numerical dispersion and nonphysical oscillation are avoided. The block-centered difference computes concentrations, temperature, and their adjoint vector functions simultaneously.The local conservation of mass, an important rule in the numerical simulation of a semiconductor device, is preserved during the computations. An optimal order convergence is obtained. Numerical examples are provided to show efficiency and application.