A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forwar...A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.展开更多
In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination...In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.展开更多
Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid...Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm.展开更多
传统有限元法对大坝-不规则地基-库水系统进行建模时存在一定的局限性。基于ABAQUS二次开发接口,实现了比例边界有限元方法(scaled boundary finite element method,SBFEM)与八叉树网格的结合,建立了一种考虑真实地形的高拱坝-不规则地...传统有限元法对大坝-不规则地基-库水系统进行建模时存在一定的局限性。基于ABAQUS二次开发接口,实现了比例边界有限元方法(scaled boundary finite element method,SBFEM)与八叉树网格的结合,建立了一种考虑真实地形的高拱坝-不规则地基-库水系统自动建模方法。利用构建的八叉树比例边界有限元法对某重力坝地震响应进行了数值验证。随后对NG5拱坝系统分别基于平整地基和不规则地基进行线弹性和非线性动力响应分析。结果表明:在地震作用下,相较于简化的平整地基拱坝系统,不规则地基拱坝系统坝顶与坝底横河向相对位移以及第一主应力峰值变化较大,分别增加了73.5%和103.6%;考虑拱坝横缝以及材料非线性的情况下,坝顶与坝底横河向相对位移以及顺河向相对位移和相对速度分别增加了43.9%、32.0%和56.6%,同时边缝的法向开度增加尤为显著,增加了388.9%和381.8%,开度峰值增加了105%,在应力和损伤方面,第一主应力峰值增加了81.6%,损伤较大的区域也沿着坝体底部进行了扩展。展开更多
剪切型断裂是岩土工程中常见的破坏模式,了解剪切破坏机理并准确预测剪切型裂纹的萌生、扩展过程对保障工程结构的安全性与稳定性具有重要意义.文章建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)和非局部...剪切型断裂是岩土工程中常见的破坏模式,了解剪切破坏机理并准确预测剪切型裂纹的萌生、扩展过程对保障工程结构的安全性与稳定性具有重要意义.文章建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)和非局部宏-微观损伤模型的剪切型裂纹动态开裂模拟方法,定义了基于偏应变概念的物质点对的正伸长量,可作为预测剪切型裂纹扩展行为的动态开裂准则,一点的损伤定义为该点影响域范围内连接的物质键损伤的加权平均值,而物质键的损伤则与基于偏应变概念的物质点对的正伸长量相关联,并引入能量退化函数建立结构域几何拓扑损伤与能量损失之间的关系,将拓扑损伤与应力应变联系起来,通过能量退化函数修正了SBFEM的刚度系数矩阵,得到了子域在损伤状态下的刚度矩阵,推导了考虑结构损伤的SBFEM动力控制方程,采用Newmark隐式算法对控制方程进行时间离散.最后,通过3个典型算例验证了建议的模型可较好地模拟剪切型断裂问题,能够很好地捕捉剪切型裂纹的扩展路径,并得到较为准确的载荷-位移曲线.展开更多
基金Project(60672042) supported by the National Natural Science Foundation of China
文摘A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.
基金Project(2017YFC0404802)supported by the National Key R&D Program of ChinaProjects(U1965206,51979143)supported by the National Natural Science Foundation of China。
文摘In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.
基金Projects(2006AA06Z105, 2007AA06Z134) supported by the National High-Tech Research and Development Program of ChinaProjects(2007, 2008) supported by China Scholarship Council (CSC)
文摘Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm.
文摘传统有限元法对大坝-不规则地基-库水系统进行建模时存在一定的局限性。基于ABAQUS二次开发接口,实现了比例边界有限元方法(scaled boundary finite element method,SBFEM)与八叉树网格的结合,建立了一种考虑真实地形的高拱坝-不规则地基-库水系统自动建模方法。利用构建的八叉树比例边界有限元法对某重力坝地震响应进行了数值验证。随后对NG5拱坝系统分别基于平整地基和不规则地基进行线弹性和非线性动力响应分析。结果表明:在地震作用下,相较于简化的平整地基拱坝系统,不规则地基拱坝系统坝顶与坝底横河向相对位移以及第一主应力峰值变化较大,分别增加了73.5%和103.6%;考虑拱坝横缝以及材料非线性的情况下,坝顶与坝底横河向相对位移以及顺河向相对位移和相对速度分别增加了43.9%、32.0%和56.6%,同时边缝的法向开度增加尤为显著,增加了388.9%和381.8%,开度峰值增加了105%,在应力和损伤方面,第一主应力峰值增加了81.6%,损伤较大的区域也沿着坝体底部进行了扩展。
文摘剪切型断裂是岩土工程中常见的破坏模式,了解剪切破坏机理并准确预测剪切型裂纹的萌生、扩展过程对保障工程结构的安全性与稳定性具有重要意义.文章建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)和非局部宏-微观损伤模型的剪切型裂纹动态开裂模拟方法,定义了基于偏应变概念的物质点对的正伸长量,可作为预测剪切型裂纹扩展行为的动态开裂准则,一点的损伤定义为该点影响域范围内连接的物质键损伤的加权平均值,而物质键的损伤则与基于偏应变概念的物质点对的正伸长量相关联,并引入能量退化函数建立结构域几何拓扑损伤与能量损失之间的关系,将拓扑损伤与应力应变联系起来,通过能量退化函数修正了SBFEM的刚度系数矩阵,得到了子域在损伤状态下的刚度矩阵,推导了考虑结构损伤的SBFEM动力控制方程,采用Newmark隐式算法对控制方程进行时间离散.最后,通过3个典型算例验证了建议的模型可较好地模拟剪切型断裂问题,能够很好地捕捉剪切型裂纹的扩展路径,并得到较为准确的载荷-位移曲线.