A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu...A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.展开更多
In the structural design of the high pier,in order to analyze the strength and structure stability,the pier was often considered a thin-walled structure.Elastoplastic incremental theory was used to establish the model...In the structural design of the high pier,in order to analyze the strength and structure stability,the pier was often considered a thin-walled structure.Elastoplastic incremental theory was used to establish the model of elastoplastic stability of high pier.By considering the combined action of pile,soil and pier together,the destabilization bearing capacity was calculated by using 3-D finite element method(3-D FEM) for piers with different pile and section height.Meanwhile,the equivalent stress in different sections of pier was computed and the processor of destabilization was discussed.When the pier is lower,the bearing capacity under mutual effect of pile,soil and pier is less than the situation when mutual effect is not considered;when the pier is higher,their differences are not conspicuous.Along with the increase of the cross-sectional height,the direction of destabilization bearing capacity is varied and the ultimate capacity is buildup.The results of a stability analysis example are almost identical with the practice.展开更多
借助 Hill 的材料应变局部化原理和土的弹塑性本构模型,应用声学张量示踪边坡失稳滑移线发生和发展,提出了局部加载条件下的确定边坡失稳滑移线的方法。在弹塑性有限元分析过程中,应用边坡材料的塑性一致性条件或滑移线两侧的应力连续条...借助 Hill 的材料应变局部化原理和土的弹塑性本构模型,应用声学张量示踪边坡失稳滑移线发生和发展,提出了局部加载条件下的确定边坡失稳滑移线的方法。在弹塑性有限元分析过程中,应用边坡材料的塑性一致性条件或滑移线两侧的应力连续条件,即应变局部化条件,检测每一个高斯点的声学张量行列式的值,当其等于或接近 0 时,标出滑移萌生的位置、方向,模拟边坡滑移线萌生和发展过程。展开更多
文摘A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.
基金Project(06JJ5080) supported by the Hunan Natural Science Foundation of ChinaProject(05026B) supported by the Young Science Foundation of Central South University of Forestry and Technology
文摘In the structural design of the high pier,in order to analyze the strength and structure stability,the pier was often considered a thin-walled structure.Elastoplastic incremental theory was used to establish the model of elastoplastic stability of high pier.By considering the combined action of pile,soil and pier together,the destabilization bearing capacity was calculated by using 3-D finite element method(3-D FEM) for piers with different pile and section height.Meanwhile,the equivalent stress in different sections of pier was computed and the processor of destabilization was discussed.When the pier is lower,the bearing capacity under mutual effect of pile,soil and pier is less than the situation when mutual effect is not considered;when the pier is higher,their differences are not conspicuous.Along with the increase of the cross-sectional height,the direction of destabilization bearing capacity is varied and the ultimate capacity is buildup.The results of a stability analysis example are almost identical with the practice.
文摘借助 Hill 的材料应变局部化原理和土的弹塑性本构模型,应用声学张量示踪边坡失稳滑移线发生和发展,提出了局部加载条件下的确定边坡失稳滑移线的方法。在弹塑性有限元分析过程中,应用边坡材料的塑性一致性条件或滑移线两侧的应力连续条件,即应变局部化条件,检测每一个高斯点的声学张量行列式的值,当其等于或接近 0 时,标出滑移萌生的位置、方向,模拟边坡滑移线萌生和发展过程。