Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte...Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.展开更多
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t...In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.展开更多
The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research...The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed.展开更多
In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution o...In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution of small and moderate earthquakes, 6 seismic dense zones are delineated. Temporal distribution of ML2 earthquakes since 1970 in each seismic dense zone has been analyzed. Based on temporal distribution characteristics and historical earthquake activity, three types of seismicities are proposed. The relationship between seismic types and crustal medium is analyzed. The mechanism of three types is discussed. Finity of strong earthquake recurrence is pro-posed. Seismic hazard in mid-long term and diversity of earthquake disaster in Shanxi seismic belt are discussed.展开更多
In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digi...In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digital Seismograph Network, the variational characteristics of shear-wave splitting on these series of strong earthquakes has been studied by using the systematic analysis method (SAM) of shear-wave splitting. The result shows the time delays of shear-wave splitting basically increase with earthquake activity intensifying. However the time delays abruptly decrease immediately before strong aftershocks. It accords with the stress relaxation before earthquakes, which was found recently in study on shear-wave splitting. The result suggests it is significant for reducing the harm degree of earthquakes to develop the stress-forecasting on earthquake in strong active tectonic zones and economic developed regions or big cities under the danger of strong earthquakes.展开更多
A destructive shock with magnitude of 6.3 occurred on 2 June 2007 at 21h34min56s UT in Pu’er region (23.0°N, 101.1°E), Yunnan Province, China. The data from DEMETER satellite during the period from 23 May t...A destructive shock with magnitude of 6.3 occurred on 2 June 2007 at 21h34min56s UT in Pu’er region (23.0°N, 101.1°E), Yunnan Province, China. The data from DEMETER satellite during the period from 23 May to 2 June, i.e., ten days before the earthquake and one day just on the day of earthquake occurrence, were analyzed. Among the 284 orbits of DEMETER during the period, 29 orbits with the trace passing through the region within 1 888 km from the epicenter were selected to be studied. Seven anomalous events were found on the dataset of the seven orbits among the 29 ones. There existed synchronous perturbations on the variations of the spectrogram of the electric field and the variations of the density and temperature of the ions and electron, in contrast with the variations of its surround- ing area. And five events appeared in the space within 1 888 km from the epicenter while the other two were out of the studied area. Electrostatic turbulences were also recorded with the synchronous perturbations with that in the electron density and ions density in plasma in the region near the epicenter in the five events, which seems to sug- gest that there be some physical relation between these events and the preparation processes of Pu’er earthquake.展开更多
The Chinese mainland is divided into some tectonic blocks by nearly NE- and EW-orientated faults. Meanwhile strong earthquakes in the Chinese mainland usually cluster in time and space. We call earthquakes in groups. ...The Chinese mainland is divided into some tectonic blocks by nearly NE- and EW-orientated faults. Meanwhile strong earthquakes in the Chinese mainland usually cluster in time and space. We call earthquakes in groups. Tectonic blocks separated by faults and earthquakes in groups are prominent features of the tectonics of the Chi-nese mainland. Correlation between movement of tectonic blocks and groups of earthquakes is discussed in this paper. The results show that earthquakes in groups often occurred at one or several block boundary faults. The released elastic strain energy is built up in the same periods and around blocks. It means that strong earthquakes in groups are mainly caused by movement of blocks. Four types of block movement are identified based ongroup earthquakes: movement along a single boundary of a block (or a combined blocks), movement of a single block, movement of multi-blocks, and movement in block interiors. If we consider distribution of all strong earthquakes occurred in the Chinese mainland, the movement along a single boundary of a block is more popular one inducing strong earthquakes. But if we only consider earthquakes in groups rather than single earthquakesthe movement of a block dominates among four modes. Statistics with respect to group earthquakes show that the Taihangshan mountain and the North China block are much active in the eastern part of Chinese mainland, and in western part of Chinese mainland the active blocks are Sichuan-Yunnan and the Kunlun-Songpan ones.展开更多
Using seismic waveform data recorded at station YK (Yingkou) of Liaoning Telemetry Digital Seismic Network, this paper studied the characteristics of shear-wave splitting before and after the Xiuyan MS5.9 (ML5.3) eart...Using seismic waveform data recorded at station YK (Yingkou) of Liaoning Telemetry Digital Seismic Network, this paper studied the characteristics of shear-wave splitting before and after the Xiuyan MS5.9 (ML5.3) earthquake in November 29, 1999 with SAM method. The results show that the predominant polarizations of fast shear-waves at YK is in direction of ENE-WSW, consistent with the direction of regional principal compressive stress and also consistent with the direction of the regional tectonic stress field in North China; time-delays increasing before Xiuyan earthquake may shows accumulation of stress before earthquake. The predominant polarizations of fast shear-waves at YK are also related to the spatial distribution of small earthquakes and correlate with the fault strike. The histogram of monthly average polarizations of fast shear-waves shows that polarizations of fast shear-waves also seems to change from two months before the earthquake, but it still needs more data for verification.展开更多
Aiming at the complexity of seismic gestation mechanism and spatial distribution, we hypothesize that the seismic data are composed of background earthquakes and anomaly earthquakes in a certain temporal-spatial scope...Aiming at the complexity of seismic gestation mechanism and spatial distribution, we hypothesize that the seismic data are composed of background earthquakes and anomaly earthquakes in a certain temporal-spatial scope. Also the background earthquakes and anomaly earthquakes both satisfy the 2-D Poisson process of different parameters respectively. In the paper, the concept of N-th order distance is introduced in order to transform 2-D superimposed Poisson process into 1-D mixture density function. On the basis of choosing the distance, mixture density function is decomposed to recognize the anomaly earthquakes through genetic algorithm. Combined with the temporal scanning of C value, the algorithm is applied to the recognition on spatial pattern of foreshock anomalies by exam-ples of Songpan and Longling sequences in the southwest of China.展开更多
The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone ha...The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocated gully terrace of the first order, forming fault-scarp in front of the loess mesa. It has been discovered in many places in ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdong earthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, the Taigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment fault on the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length. Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that, in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins might generate great earthquake with M=8.展开更多
Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism...Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of MS=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm.展开更多
According to the analysis on the characteristics of historic earthquakes in Jiangsu Province and South Huanghai Sea region, the historical earthquakes in the studied area are divided into two kinds of comparatively sa...According to the analysis on the characteristics of historic earthquakes in Jiangsu Province and South Huanghai Sea region, the historical earthquakes in the studied area are divided into two kinds of comparatively safe class and comparatively dangerous class. Then the statistical result of earthquake class, the characteristics of geo-graphical distribution and geological structures are studied. The study shows: a) In Jiangsu Province and South Huanghai Sea region, the majority of historical strong earthquakes belong to comparatively safe class, only 13.8% belong to comparatively dangerous class; b) Most historical earthquakes belong to comparatively safe class in the land area of Jiangsu, eastern sea area of Yangtze River mouth and northern depression of South Huanghai Sea region. However, along the coast of middle Jiangsu Province and in the sea area of South Huanghai Sea, the distribution of historical earthquake classes is complex and the earthquake series of comparatively dan-gerous class and comparatively safe class are equivalent in number; c) In the studied area, the statistical results of historical earthquake classes and the characteristics of spatial distribution accord very well with the real case of present-day earthquake series. It shows that the seismic activity in the region has the characteristic of succession, and the result from this study can be used as a reference for early postseismic judgment in the earthquake emer-gency work in Jiangsu Province.展开更多
Based on the discrete wavenumber method, we calculate the fields of dynamic Coulomb rupture stress changes and static stress changes caused by M6.5 earthquake in Wuding, and study their relationship with the subsequen...Based on the discrete wavenumber method, we calculate the fields of dynamic Coulomb rupture stress changes and static stress changes caused by M6.5 earthquake in Wuding, and study their relationship with the subsequent after- shocks. The results show that the spatial distribution patterns of the positive region of dynamic stress peak value and static stress peak value are similarly asymmetric, which are basically identical with distribution features of aftershock. The dynamic stress peak value and the static stress in the positive region are more than 0.1 MPa and 0.01 MPa of the triggering threshold, respectively, which indicates that the dynamic and static stresses are helpful for the occurrence of aftershock. This suggests that both influences of dynamic and static stresses should be con- sidered other than only either of them when studying aftershock triggering in near field.展开更多
Deterministic, probabilistic and composite-grading methods are used to get the possible locations of strong earth-quakes in the future in Norwest Beijing and its vicinity based on the quantitative data and their accur...Deterministic, probabilistic and composite-grading methods are used to get the possible locations of strong earth-quakes in the future in Norwest Beijing and its vicinity based on the quantitative data and their accuracy about active tectonics in the research area and by ordering, some questions in the results are also discussed. It shows that the most dangerous fault segments for strong earthquakes in the future include: segments B and A of the southern boundary fault of the Yangyuan basin, the southern boundary fault of the Xuanhua basin, the east segment of the southern Huaian fault and the east segment of the northern YanggaoTianzhen fault. The most dangerous area is YangyuanShenjing basin, the second one is TianzhenHuaianXuanhua basin and the third dangerous areas are WanquanZhangjiakou and northeast of Yuxian to southwest of Fanshan.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61773142).
文摘Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.
基金National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22)。
文摘In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.
文摘The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed.
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.
基金Key Science Research Project (100501-05-09) from China Earthquake Administration during the tenth Five-year Plan.
文摘In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution of small and moderate earthquakes, 6 seismic dense zones are delineated. Temporal distribution of ML2 earthquakes since 1970 in each seismic dense zone has been analyzed. Based on temporal distribution characteristics and historical earthquake activity, three types of seismicities are proposed. The relationship between seismic types and crustal medium is analyzed. The mechanism of three types is discussed. Finity of strong earthquake recurrence is pro-posed. Seismic hazard in mid-long term and diversity of earthquake disaster in Shanxi seismic belt are discussed.
基金National Natural Science Foundation of China (40274011 40074020) MOST (2001BA601B02) and Joint Seis-mological Science Foundation of China (102068).
文摘In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digital Seismograph Network, the variational characteristics of shear-wave splitting on these series of strong earthquakes has been studied by using the systematic analysis method (SAM) of shear-wave splitting. The result shows the time delays of shear-wave splitting basically increase with earthquake activity intensifying. However the time delays abruptly decrease immediately before strong aftershocks. It accords with the stress relaxation before earthquakes, which was found recently in study on shear-wave splitting. The result suggests it is significant for reducing the harm degree of earthquakes to develop the stress-forecasting on earthquake in strong active tectonic zones and economic developed regions or big cities under the danger of strong earthquakes.
基金Special Project for Earthquake Monitoring of China Earthquake Administration.
文摘A destructive shock with magnitude of 6.3 occurred on 2 June 2007 at 21h34min56s UT in Pu’er region (23.0°N, 101.1°E), Yunnan Province, China. The data from DEMETER satellite during the period from 23 May to 2 June, i.e., ten days before the earthquake and one day just on the day of earthquake occurrence, were analyzed. Among the 284 orbits of DEMETER during the period, 29 orbits with the trace passing through the region within 1 888 km from the epicenter were selected to be studied. Seven anomalous events were found on the dataset of the seven orbits among the 29 ones. There existed synchronous perturbations on the variations of the spectrogram of the electric field and the variations of the density and temperature of the ions and electron, in contrast with the variations of its surround- ing area. And five events appeared in the space within 1 888 km from the epicenter while the other two were out of the studied area. Electrostatic turbulences were also recorded with the synchronous perturbations with that in the electron density and ions density in plasma in the region near the epicenter in the five events, which seems to sug- gest that there be some physical relation between these events and the preparation processes of Pu’er earthquake.
基金Foundation item: State Key Basic Research Planning Project (G199804070401).
文摘The Chinese mainland is divided into some tectonic blocks by nearly NE- and EW-orientated faults. Meanwhile strong earthquakes in the Chinese mainland usually cluster in time and space. We call earthquakes in groups. Tectonic blocks separated by faults and earthquakes in groups are prominent features of the tectonics of the Chi-nese mainland. Correlation between movement of tectonic blocks and groups of earthquakes is discussed in this paper. The results show that earthquakes in groups often occurred at one or several block boundary faults. The released elastic strain energy is built up in the same periods and around blocks. It means that strong earthquakes in groups are mainly caused by movement of blocks. Four types of block movement are identified based ongroup earthquakes: movement along a single boundary of a block (or a combined blocks), movement of a single block, movement of multi-blocks, and movement in block interiors. If we consider distribution of all strong earthquakes occurred in the Chinese mainland, the movement along a single boundary of a block is more popular one inducing strong earthquakes. But if we only consider earthquakes in groups rather than single earthquakesthe movement of a block dominates among four modes. Statistics with respect to group earthquakes show that the Taihangshan mountain and the North China block are much active in the eastern part of Chinese mainland, and in western part of Chinese mainland the active blocks are Sichuan-Yunnan and the Kunlun-Songpan ones.
基金Basis and Special Research Foundation, Institute of Earthquake Science, China Earthquake Administration (2007-24)
文摘Using seismic waveform data recorded at station YK (Yingkou) of Liaoning Telemetry Digital Seismic Network, this paper studied the characteristics of shear-wave splitting before and after the Xiuyan MS5.9 (ML5.3) earthquake in November 29, 1999 with SAM method. The results show that the predominant polarizations of fast shear-waves at YK is in direction of ENE-WSW, consistent with the direction of regional principal compressive stress and also consistent with the direction of the regional tectonic stress field in North China; time-delays increasing before Xiuyan earthquake may shows accumulation of stress before earthquake. The predominant polarizations of fast shear-waves at YK are also related to the spatial distribution of small earthquakes and correlate with the fault strike. The histogram of monthly average polarizations of fast shear-waves shows that polarizations of fast shear-waves also seems to change from two months before the earthquake, but it still needs more data for verification.
基金National Science Fund for Distinguished Young Scholars (40225004), The CAS Hundred Scholars Program.
文摘Aiming at the complexity of seismic gestation mechanism and spatial distribution, we hypothesize that the seismic data are composed of background earthquakes and anomaly earthquakes in a certain temporal-spatial scope. Also the background earthquakes and anomaly earthquakes both satisfy the 2-D Poisson process of different parameters respectively. In the paper, the concept of N-th order distance is introduced in order to transform 2-D superimposed Poisson process into 1-D mixture density function. On the basis of choosing the distance, mixture density function is decomposed to recognize the anomaly earthquakes through genetic algorithm. Combined with the temporal scanning of C value, the algorithm is applied to the recognition on spatial pattern of foreshock anomalies by exam-ples of Songpan and Longling sequences in the southwest of China.
基金Chinese Joint Seismological Science Foundation (201017).
文摘The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocated gully terrace of the first order, forming fault-scarp in front of the loess mesa. It has been discovered in many places in ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdong earthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, the Taigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment fault on the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length. Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that, in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins might generate great earthquake with M=8.
文摘Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of MS=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm.
基金Scientific and Technological Project of Social Development of Jiangsu Province (BS2002068).
文摘According to the analysis on the characteristics of historic earthquakes in Jiangsu Province and South Huanghai Sea region, the historical earthquakes in the studied area are divided into two kinds of comparatively safe class and comparatively dangerous class. Then the statistical result of earthquake class, the characteristics of geo-graphical distribution and geological structures are studied. The study shows: a) In Jiangsu Province and South Huanghai Sea region, the majority of historical strong earthquakes belong to comparatively safe class, only 13.8% belong to comparatively dangerous class; b) Most historical earthquakes belong to comparatively safe class in the land area of Jiangsu, eastern sea area of Yangtze River mouth and northern depression of South Huanghai Sea region. However, along the coast of middle Jiangsu Province and in the sea area of South Huanghai Sea, the distribution of historical earthquake classes is complex and the earthquake series of comparatively dan-gerous class and comparatively safe class are equivalent in number; c) In the studied area, the statistical results of historical earthquake classes and the characteristics of spatial distribution accord very well with the real case of present-day earthquake series. It shows that the seismic activity in the region has the characteristic of succession, and the result from this study can be used as a reference for early postseismic judgment in the earthquake emer-gency work in Jiangsu Province.
基金State Natural Scientific Foundation of China (No. 49734240) the China Seismological Bureau in the Project 95-04-09 and the Xinjiang Uygur Autonomous Region in the National 305 Project 96-915-07-03.
基金Key Project Process Mechanism and Prediction of Geological Hazards (2001CB711005-1-3) and State Key Basic Research Project Mechanism and Prediction of Continental Earthquakes (G1998040702). sponsored by the Ministry of Science and Techno
文摘Based on the discrete wavenumber method, we calculate the fields of dynamic Coulomb rupture stress changes and static stress changes caused by M6.5 earthquake in Wuding, and study their relationship with the subsequent after- shocks. The results show that the spatial distribution patterns of the positive region of dynamic stress peak value and static stress peak value are similarly asymmetric, which are basically identical with distribution features of aftershock. The dynamic stress peak value and the static stress in the positive region are more than 0.1 MPa and 0.01 MPa of the triggering threshold, respectively, which indicates that the dynamic and static stresses are helpful for the occurrence of aftershock. This suggests that both influences of dynamic and static stresses should be con- sidered other than only either of them when studying aftershock triggering in near field.
基金National major basic-theory planning project Mechanism and Prediction of Strong Earthquake (95130105) and the Key Project from China Seismological Bureau (95040803).
文摘Deterministic, probabilistic and composite-grading methods are used to get the possible locations of strong earth-quakes in the future in Norwest Beijing and its vicinity based on the quantitative data and their accuracy about active tectonics in the research area and by ordering, some questions in the results are also discussed. It shows that the most dangerous fault segments for strong earthquakes in the future include: segments B and A of the southern boundary fault of the Yangyuan basin, the southern boundary fault of the Xuanhua basin, the east segment of the southern Huaian fault and the east segment of the northern YanggaoTianzhen fault. The most dangerous area is YangyuanShenjing basin, the second one is TianzhenHuaianXuanhua basin and the third dangerous areas are WanquanZhangjiakou and northeast of Yuxian to southwest of Fanshan.