Intentional electromagnetic interference is a serious threat to the safety of electronic devices. Multiple electromagnetic pulses will be coupled and transmitted to electronic devices through the cables.Accumulative e...Intentional electromagnetic interference is a serious threat to the safety of electronic devices. Multiple electromagnetic pulses will be coupled and transmitted to electronic devices through the cables.Accumulative effects are generated, which make it easier for damage to occur in the electronic devices. In this article, the working principle of micro-silicon acceleration sensors is introduced. The accumulative effects of multiple pulses on acceleration sensors is studied by a large number of injection experiments.The accumulation trends of multiple pulses with different pulse numbers and intervals are analyzed. The damaged structures inside abnormal sensor amplifiers were observed via optical microscopy and scanning electron microscopy. The experimental results show that the accumulative effect is strengthened with increased pulse number or decreased pulse interval, and the threshold voltage for multiple pulses on the acceleration sensor decreases. The threshold voltage for a single pulse is 321.57 V. When the pulse interval is 1 μs and the pulse number is 5, the threshold voltage for multiple pulses is 163.42 V,which is reduced by 49.12% compared with a single pulse. These results provide a reference for the damage design of electromagnetic pulse weapons.展开更多
A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating...A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating various vehicle motions:stationary and non-stationary(i.e.in acceleration or deceleration mode).Analysis of the results indicated the following items.1) It is critical to use the vertical TPCP as the design control criteria for the tensile strains at the bottom of the AC layer when the base layer modulus is lower in magnitude(e.g.≤400 MPa);however,when the base layer modulus is higher in magnitude(e.g.≥7 000 MPa),the horizontal TPCP and the tensile strains in the X-direction at the surface of the AC layer should also be considered as part of the design response criteria.2) The definition of "overload" needs to be revised to include tire pressure over-inflation,i.e.,a vehicle should be considered to be overloaded if the wheel load exceeds the specification and/or the tire inflation pressure is higher than the specification.3) Light trucks have more structural impact on the strain responses and pavement design when the thickness of the surfacing AC layer is thinner(e.g.≤50 mm).4) The acceleration of a vehicle does not significantly impact the AC surface distresses such as rutting at the top of the upgrade slopes or intersections;however,vehicle deceleration can dramatically induce horizontal shear strains and consequently,aggravate shoving and rutting problems at the highway intersections.Evidently,these factors should be taken into account during mechanistic stress-strain modeling and structural design of asphalt pavements.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.11502118).
文摘Intentional electromagnetic interference is a serious threat to the safety of electronic devices. Multiple electromagnetic pulses will be coupled and transmitted to electronic devices through the cables.Accumulative effects are generated, which make it easier for damage to occur in the electronic devices. In this article, the working principle of micro-silicon acceleration sensors is introduced. The accumulative effects of multiple pulses on acceleration sensors is studied by a large number of injection experiments.The accumulation trends of multiple pulses with different pulse numbers and intervals are analyzed. The damaged structures inside abnormal sensor amplifiers were observed via optical microscopy and scanning electron microscopy. The experimental results show that the accumulative effect is strengthened with increased pulse number or decreased pulse interval, and the threshold voltage for multiple pulses on the acceleration sensor decreases. The threshold voltage for a single pulse is 321.57 V. When the pulse interval is 1 μs and the pulse number is 5, the threshold voltage for multiple pulses is 163.42 V,which is reduced by 49.12% compared with a single pulse. These results provide a reference for the damage design of electromagnetic pulse weapons.
文摘A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating various vehicle motions:stationary and non-stationary(i.e.in acceleration or deceleration mode).Analysis of the results indicated the following items.1) It is critical to use the vertical TPCP as the design control criteria for the tensile strains at the bottom of the AC layer when the base layer modulus is lower in magnitude(e.g.≤400 MPa);however,when the base layer modulus is higher in magnitude(e.g.≥7 000 MPa),the horizontal TPCP and the tensile strains in the X-direction at the surface of the AC layer should also be considered as part of the design response criteria.2) The definition of "overload" needs to be revised to include tire pressure over-inflation,i.e.,a vehicle should be considered to be overloaded if the wheel load exceeds the specification and/or the tire inflation pressure is higher than the specification.3) Light trucks have more structural impact on the strain responses and pavement design when the thickness of the surfacing AC layer is thinner(e.g.≤50 mm).4) The acceleration of a vehicle does not significantly impact the AC surface distresses such as rutting at the top of the upgrade slopes or intersections;however,vehicle deceleration can dramatically induce horizontal shear strains and consequently,aggravate shoving and rutting problems at the highway intersections.Evidently,these factors should be taken into account during mechanistic stress-strain modeling and structural design of asphalt pavements.