The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third...The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.展开更多
The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos...The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.展开更多
Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network mode...Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.展开更多
To deal with the non-Caussian noise in standard 2-D SAR images, the deramped signal in imaging plane, and the possible symmetric distribution of complex noise, the fourth-order cumulant of complex process is introduce...To deal with the non-Caussian noise in standard 2-D SAR images, the deramped signal in imaging plane, and the possible symmetric distribution of complex noise, the fourth-order cumulant of complex process is introduced into SAR tomography. With the estimated AR parameters of ARMA model of noise through Yule-Walker equation, the signal series of height is pre-filtered. Then, through ESPRIT, the spectrum is obtained and the aperture in height direction is synthesized. Finally, the SAR tomography imaging of scene is achieved. The results of processing on signal with non-Gaussian noise demonstrate the robustness of the proposed method. The tomography imaging of the scenes shows that the higher-order spectrum analysis is feasible in the application.展开更多
Sensitivity and human performance are two important parameters for IR imaging system. Noise equivalent temperature difference (NETD) and minimum resolvable temperature difference (MRTD) can describe sensitivity and hu...Sensitivity and human performance are two important parameters for IR imaging system. Noise equivalent temperature difference (NETD) and minimum resolvable temperature difference (MRTD) can describe sensitivity and human performance of IR imaging system. So a lot of engineers apply themselves to studying the methods to measure NETD and MRTD for IR imaging system. The classical laboratory measurement methodologies for NETD and MRTD are introduced. And, two new approaches to three-dimensional (3-D) noise and MRTD/MRC are also portrayed, which can overcome some of the disadvantages existed in classical testing of NETD and MRTD. With the help of the new laboratory measurements, the disadvantages of the classical methods to measure NETD and MRTD can be solved.展开更多
针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成...针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成分分析(IPCA)对输入的数据进行降维预处理;其次将输入模型的像素分割成小的重叠的三维小卷积块,在分割的小块上基于中心像素形成地面标签,利用三维核函数进行卷积处理,形成连续的三维特征图,保留空谱特征。用3D-CNN同时提取空谱特征,然后在三维卷积中加入深度可分离卷积对空间特征再次提取,丰富空谱特征的同时减少参数量,从而减少计算时间,分类精度也有所提高。所提模型在Indian Pines、Salinas Scene和University of Pavia公开数据集上验证,并且同其他经典的分类方法进行比较。实验结果表明,该方法不仅能大幅度节省可学习的参数,降低模型复杂度,而且表现出较好的分类性能,其中总体精度(OA)、平均分类精度(AA)和Kappa系数均可达99%以上。展开更多
目的对比各向同性三维快速自旋回波(3 dimensional fast spin echo,3D-FSE)和三维快速场回波(3 dimensional fast field echo,3D-FFE)及二维快速自旋回波(2 dimensional fast spin echo,2D-FSE)对踝关节解剖结构显示的特点。方法随机选1...目的对比各向同性三维快速自旋回波(3 dimensional fast spin echo,3D-FSE)和三维快速场回波(3 dimensional fast field echo,3D-FFE)及二维快速自旋回波(2 dimensional fast spin echo,2D-FSE)对踝关节解剖结构显示的特点。方法随机选10名志愿者进行各向同性3D-FSE、3D-FFE及2D-FSE序列磁共振扫描以及三维重建,并测量各组织的信噪比(signal-to-noise ratio,SNR)、对比信噪比(contrast-to-noise ratio,CNR),用5分利克特表(5-point Likert scale)评估各序列各组织的成像质量。结果在各组织中的3D-FSE序列SNR最高,在软骨、肌肉、肌腱中其次为3D-FFE序列;软骨-骨髓、肌肉-肌腱、关节液-肌腱中的3DFSE的CNR最高,其次为3D-FFE,各序列间具有统计学差异(P<0.05)。主观评估三种序列踝关节软骨的成像质量,各序列间有统计学差异(P<0.05),3D-FFE成像质量最好,其次为3D-FSE。主观评估韧带中3D-FSE、2D-FSE序列均优于3D-FFE序列(P<0.05);主观评估肌腱中,除腓短肌腱外,其余肌腱都有统计学差异(P<0.05),且都是3D-FSE成像质量最好,其次为2D-FSE序列。结论各向同性3D-FSE序列具有最高的SNR、CNR,能任意平面重建,扫描时间短,可全面评估复杂关节的解剖结构,广泛应用临床。展开更多
基金This work was supported by the General Design Department,China Academy of Space Technology(10377).
文摘The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.
文摘The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.
基金Project(51321065)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(2013CB035904)supported by the National Basic Research Program of China(973 Program)Project(51439005)supported by the National Natural Science Foundation of China
文摘Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.
基金supported partly by the New Century Excellent Talents in University(23901019)the Sichuan Provincial Youth Science and Technology Foundation(06ZQ026-006).
文摘To deal with the non-Caussian noise in standard 2-D SAR images, the deramped signal in imaging plane, and the possible symmetric distribution of complex noise, the fourth-order cumulant of complex process is introduced into SAR tomography. With the estimated AR parameters of ARMA model of noise through Yule-Walker equation, the signal series of height is pre-filtered. Then, through ESPRIT, the spectrum is obtained and the aperture in height direction is synthesized. Finally, the SAR tomography imaging of scene is achieved. The results of processing on signal with non-Gaussian noise demonstrate the robustness of the proposed method. The tomography imaging of the scenes shows that the higher-order spectrum analysis is feasible in the application.
文摘Sensitivity and human performance are two important parameters for IR imaging system. Noise equivalent temperature difference (NETD) and minimum resolvable temperature difference (MRTD) can describe sensitivity and human performance of IR imaging system. So a lot of engineers apply themselves to studying the methods to measure NETD and MRTD for IR imaging system. The classical laboratory measurement methodologies for NETD and MRTD are introduced. And, two new approaches to three-dimensional (3-D) noise and MRTD/MRC are also portrayed, which can overcome some of the disadvantages existed in classical testing of NETD and MRTD. With the help of the new laboratory measurements, the disadvantages of the classical methods to measure NETD and MRTD can be solved.
文摘针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成分分析(IPCA)对输入的数据进行降维预处理;其次将输入模型的像素分割成小的重叠的三维小卷积块,在分割的小块上基于中心像素形成地面标签,利用三维核函数进行卷积处理,形成连续的三维特征图,保留空谱特征。用3D-CNN同时提取空谱特征,然后在三维卷积中加入深度可分离卷积对空间特征再次提取,丰富空谱特征的同时减少参数量,从而减少计算时间,分类精度也有所提高。所提模型在Indian Pines、Salinas Scene和University of Pavia公开数据集上验证,并且同其他经典的分类方法进行比较。实验结果表明,该方法不仅能大幅度节省可学习的参数,降低模型复杂度,而且表现出较好的分类性能,其中总体精度(OA)、平均分类精度(AA)和Kappa系数均可达99%以上。
文摘目的对比各向同性三维快速自旋回波(3 dimensional fast spin echo,3D-FSE)和三维快速场回波(3 dimensional fast field echo,3D-FFE)及二维快速自旋回波(2 dimensional fast spin echo,2D-FSE)对踝关节解剖结构显示的特点。方法随机选10名志愿者进行各向同性3D-FSE、3D-FFE及2D-FSE序列磁共振扫描以及三维重建,并测量各组织的信噪比(signal-to-noise ratio,SNR)、对比信噪比(contrast-to-noise ratio,CNR),用5分利克特表(5-point Likert scale)评估各序列各组织的成像质量。结果在各组织中的3D-FSE序列SNR最高,在软骨、肌肉、肌腱中其次为3D-FFE序列;软骨-骨髓、肌肉-肌腱、关节液-肌腱中的3DFSE的CNR最高,其次为3D-FFE,各序列间具有统计学差异(P<0.05)。主观评估三种序列踝关节软骨的成像质量,各序列间有统计学差异(P<0.05),3D-FFE成像质量最好,其次为3D-FSE。主观评估韧带中3D-FSE、2D-FSE序列均优于3D-FFE序列(P<0.05);主观评估肌腱中,除腓短肌腱外,其余肌腱都有统计学差异(P<0.05),且都是3D-FSE成像质量最好,其次为2D-FSE序列。结论各向同性3D-FSE序列具有最高的SNR、CNR,能任意平面重建,扫描时间短,可全面评估复杂关节的解剖结构,广泛应用临床。