Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is...Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is severely constrained by the absence of efficient methods for rapidly predicting crystal packing modes from molecular structures,impeding the high-throughput rational design of such materials.In this study,we employed quantified indicators,such as hydrogen bond dimension and maximum planar separation,to quickly screen 172DEM and 16 non-2DEM crystal structures from a crystal database.They were subsequently compared and analyzed,focusing on hydrogen bond donor-acceptor combinations,skeleton features,and intermolecular interactions.Our findings suggest that theπ-πpacking interaction energy is a key determinant in the formation of layered packing modes by planar energetic molecules,with its magnitude primarily influenced by the strongest dimericπ-πinteraction(π-π2max).Consequently,we have delineated a critical threshold forπ-π2max to discern layered packing modes and formulated a theoretical model for predictingπ-π2max,grounded in molecular electrostatic potential and dipole moment analysis.The predictive efficacy of this model was substantiated through external validation on a test set comprising 31 planar energetic molecular crystals,achieving an accuracy of 84%and a recall of 75%.Furthermore,the proposed model shows superior classification predictive performance compared to typical machine learning methods,such as random forest,on the external validation samples.This contribution introduces a novel methodology for the identification of crystal packing modes in 2DEMs,potentially accelerating the design and synthesis of high-energy,low-sensitivity 2DEMs.展开更多
In the field of weapon system of systems (WSOS) simulation, various indicators are widely used to describe the capability of WSOS, but it is always difficult to describe the comprehensive capability of WSOS quickly an...In the field of weapon system of systems (WSOS) simulation, various indicators are widely used to describe the capability of WSOS, but it is always difficult to describe the comprehensive capability of WSOS quickly and intuitively by visualization of multi-dimensional indicators. A method of machine learning and visualization is proposed, which can display and analyze the capabilities of different WSOS in a two-dimensional plane. The analysis and comparison of the comprehensive capability of different components of WSOS is realized by the method, which consists of six parts: multiple simulations, key indicators mining, three spatial distance calculation, fusion project calculation, calculation of individual capability density, and calculation of multiple capability ranges overlay. Binding a simulation experiment, the collaborative analysis of six indicators and 100 possible kinds of red WSOS are achieved. The experimental results show that this method can effectively improve the quality and speed of capabilities analysis, reveal a large number of potential information, and provide a visual support for the qualitative and quantitative analysis model.展开更多
Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud de...Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud detection from the visual band of a satellite image is developed. Firstly, we consider the differences between the cloud and ground including high grey level, good continuity of grey level, area of cloud region, and the variance of local fractal dimension (VLFD) of the cloud region. A single cloud region detection method is proposed. Secondly, by introducing a reference satellite image and by comparing the variance in the dimensions corresponding to the reference and the tested images, a method that detects multiple cloud regions and determines whether or not the cloud exists in an image is described. By using several Ikonos images, the performance of the proposed method is demonstrated.展开更多
基金support from National Natural Science Foundation of China(Grant Nos.22275145,22305189and 21875184)Natural Science Foundation of Shaanxi Province(Grant Nos.2022JC-10 and 2024JC-YBQN-0112).
文摘Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is severely constrained by the absence of efficient methods for rapidly predicting crystal packing modes from molecular structures,impeding the high-throughput rational design of such materials.In this study,we employed quantified indicators,such as hydrogen bond dimension and maximum planar separation,to quickly screen 172DEM and 16 non-2DEM crystal structures from a crystal database.They were subsequently compared and analyzed,focusing on hydrogen bond donor-acceptor combinations,skeleton features,and intermolecular interactions.Our findings suggest that theπ-πpacking interaction energy is a key determinant in the formation of layered packing modes by planar energetic molecules,with its magnitude primarily influenced by the strongest dimericπ-πinteraction(π-π2max).Consequently,we have delineated a critical threshold forπ-π2max to discern layered packing modes and formulated a theoretical model for predictingπ-π2max,grounded in molecular electrostatic potential and dipole moment analysis.The predictive efficacy of this model was substantiated through external validation on a test set comprising 31 planar energetic molecular crystals,achieving an accuracy of 84%and a recall of 75%.Furthermore,the proposed model shows superior classification predictive performance compared to typical machine learning methods,such as random forest,on the external validation samples.This contribution introduces a novel methodology for the identification of crystal packing modes in 2DEMs,potentially accelerating the design and synthesis of high-energy,low-sensitivity 2DEMs.
基金supported by the National Natural Science Foundation of China(U14352186140340161273189)
文摘In the field of weapon system of systems (WSOS) simulation, various indicators are widely used to describe the capability of WSOS, but it is always difficult to describe the comprehensive capability of WSOS quickly and intuitively by visualization of multi-dimensional indicators. A method of machine learning and visualization is proposed, which can display and analyze the capabilities of different WSOS in a two-dimensional plane. The analysis and comparison of the comprehensive capability of different components of WSOS is realized by the method, which consists of six parts: multiple simulations, key indicators mining, three spatial distance calculation, fusion project calculation, calculation of individual capability density, and calculation of multiple capability ranges overlay. Binding a simulation experiment, the collaborative analysis of six indicators and 100 possible kinds of red WSOS are achieved. The experimental results show that this method can effectively improve the quality and speed of capabilities analysis, reveal a large number of potential information, and provide a visual support for the qualitative and quantitative analysis model.
基金supported by the National Natural Science Foundation of China(61702385)the Key Projects of National Social Science Foundation of China(11&ZD189)
文摘Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud detection from the visual band of a satellite image is developed. Firstly, we consider the differences between the cloud and ground including high grey level, good continuity of grey level, area of cloud region, and the variance of local fractal dimension (VLFD) of the cloud region. A single cloud region detection method is proposed. Secondly, by introducing a reference satellite image and by comparing the variance in the dimensions corresponding to the reference and the tested images, a method that detects multiple cloud regions and determines whether or not the cloud exists in an image is described. By using several Ikonos images, the performance of the proposed method is demonstrated.