The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size o...The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size of cavity and the dimension of dielectric materials is proposed.And several error correction curves are provided for measuring high dielectric constant materials.Finally,the experiment is conducted to validate the feasibility of our analysis.展开更多
针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行...针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行性规则和改进的epsilon约束处理方法进行更新。在第一阶段,主种群和副种群分别探索约束Pareto前沿(CPF)与无约束Pareto前沿(UPF),从而获取UPF和CPF的位置信息;在第二阶段,设计一种分类方法,根据UPF与CPF的位置对CMOP进行分类,从而对不同类型的CMOP执行特定的进化策略;此外,提出一种随机扰动策略,在副种群进化到CPF附近时,对它进行随机扰动以产生一些位于CPF上的个体,从而促进主种群在CPF上的收敛与分布。把所提算法与6个具有代表性的算法:CMOES(Constrained Multi-objective Optimization based on Even Search)、dp-ACS(dual-population evolutionary algorithm based on Adaptive Constraint Strength)、c-DPEA(DualPopulation based Evolutionary Algorithm for constrained multi-objective optimization)、CAEAD(Constrained Evolutionary Algorithm based on Alternative Evolution and Degeneration)、BiCo(evolutionary algorithm with Bidirectional Coevolution)和DDCMOEA(Dual-stage Dual-population Evolutionary Algorithm for Constrained Multiobjective Optimization)在LIRCMOP和DASCMOP两个测试集上进行实验比较。实验结果表明,DPDSEA在23个问题中取得了15个最优反转世代距离(IGD)值和12个最优超体积(HV)值,展现了DPDSEA在处理复杂CMOP时显著的性能优势。展开更多
针对光照强度不均匀造成光伏阵列的输出曲线为多峰曲线,传统最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制算法不能跟踪到全局最大功率的问题,文章提出一种基于改进麻雀搜索算法(Improved the Sparrow Search Algorithm,ISSA...针对光照强度不均匀造成光伏阵列的输出曲线为多峰曲线,传统最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制算法不能跟踪到全局最大功率的问题,文章提出一种基于改进麻雀搜索算法(Improved the Sparrow Search Algorithm,ISSA)和扰动观察法(Perturbation and Observation Method,P&O)的光储发电系统MPPT控制方法。首先,在跟踪前期,采用混沌映射方式增加ISSA种群多样性,提升算法广泛搜索能力。为了防止算法陷入局部最优,利用萤火虫扰动算法对麻雀个体进行扰动更新;其次,在跟踪后期,使用P&O防止系统在最大功率点附近振荡,保证最大功率点稳定输出;最后,经过算例分析,所提MPPT控制方法实现了不同场景下的快速跟踪、精准输出,能够很好应用地于光储混合发电系统中。展开更多
差分隐私凭借其强大的隐私保护能力被应用在随机森林算法解决其中的隐私泄露问题,然而,直接将差分隐私应用在随机森林算法会使模型的分类准确率严重下降.为了平衡隐私保护和模型准确性之间的矛盾,提出了一种高效的差分隐私随机森林训练...差分隐私凭借其强大的隐私保护能力被应用在随机森林算法解决其中的隐私泄露问题,然而,直接将差分隐私应用在随机森林算法会使模型的分类准确率严重下降.为了平衡隐私保护和模型准确性之间的矛盾,提出了一种高效的差分隐私随机森林训练算法eDPRF(efficient differential privacy random forest).具体而言,该算法设计了决策树构建方法,通过引入重排翻转机制高效地查询输出优势,进一步设计相应的效用函数实现分裂特征以及标签的精准输出,有效改善树模型在扰动情况下对于数据信息的学习能力.同时基于组合定理设计了隐私预算分配的策略,通过不放回抽样获得训练子集以及差异化调整内部预算的方式提高树节点的查询预算.最后,通过理论分析以及实验评估,表明算法在给定相同隐私预算的情况下,模型的分类准确度优于同类算法.展开更多
近年来如何刻画国际金融风险对中国市场的影响,成为学术界的热门热点之一。已有文献大多集中于研究国际股票市场之间的风险溢出效应,较少关注国际股票市场对中国期权市场的风险外溢效应。本文将标普500ETF走势嵌入上证50ETF的收益率过程...近年来如何刻画国际金融风险对中国市场的影响,成为学术界的热门热点之一。已有文献大多集中于研究国际股票市场之间的风险溢出效应,较少关注国际股票市场对中国期权市场的风险外溢效应。本文将标普500ETF走势嵌入上证50ETF的收益率过程,构建IFR_BS模型(BS Model with the Impact of International Financial Risk);然后应用特征函数微扰法和Fourier-Cosine定价方法,推导出该模型下欧式期权的近似解析定价公式。数值实验和实证结果表明:(1)IFR_BS模型可以较好地刻画上证50ETF收益率分布的“尖峰”、“肥尾”和“有偏”等统计特征。(2)考虑国际金融风险溢价的IFR_BS模型下的期权定价公式,可以解决BS模型对短到期期权尤其是短到期深度OTM期权估值不足的问题。展开更多
最大功率点跟踪技术(Maximum Power Point Tracking, MPPT)是光伏发电系统中关键技术研究的热点之一。针对传统扰动观察法跟踪速度和精度无法兼顾的问题,文中提出了一种以功率变化量为步长控制量的自适应变步长扰动观察法,通过判断功率...最大功率点跟踪技术(Maximum Power Point Tracking, MPPT)是光伏发电系统中关键技术研究的热点之一。针对传统扰动观察法跟踪速度和精度无法兼顾的问题,文中提出了一种以功率变化量为步长控制量的自适应变步长扰动观察法,通过判断功率变化趋势,对远离最大功率点,采用大步长逼近;靠近最大功率点,采用小步长逼近。建立太阳能光伏电池数学模型得到其输出特性曲线,再利用MATLAB/Simulink搭建基于Boost电路的MPPT仿真模型,最后经仿真验证了所提出算法的稳定性、快速性和准确性,它比传统算法具有更好的MPPT暂态性能。展开更多
针对传统的最大功率点跟踪MPPT(maximum power point tracking)方法在部分遮阴条件下陷入局部最优而失效,且常见的智能优化算法往往存在收敛精度差、收敛速度慢、系统稳定性不高等问题,提出1种基于旗鱼优化SFO(sailfish optimization)...针对传统的最大功率点跟踪MPPT(maximum power point tracking)方法在部分遮阴条件下陷入局部最优而失效,且常见的智能优化算法往往存在收敛精度差、收敛速度慢、系统稳定性不高等问题,提出1种基于旗鱼优化SFO(sailfish optimization)算法与扰动观察P&O(perturbation and observation)法混合控制的光伏系统最大功率跟踪策略。SFO算法同时使用旗鱼(捕食者)和沙丁鱼(猎物)2个种群,可保证粒子在全局空间探索。所提混合算法先利用SFO算法快速跟踪到最大功率点附近,再利用小步长P&O法对最大功率点进行精细搜索,最后利用分段步长的方法同时兼顾MPPT搜索速度和搜索精度的要求。仿真结果表明,所提混合控制策略有效提升了控制系统的响应速度及跟踪精度,提升了系统的稳定性。展开更多
文摘The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size of cavity and the dimension of dielectric materials is proposed.And several error correction curves are provided for measuring high dielectric constant materials.Finally,the experiment is conducted to validate the feasibility of our analysis.
文摘针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行性规则和改进的epsilon约束处理方法进行更新。在第一阶段,主种群和副种群分别探索约束Pareto前沿(CPF)与无约束Pareto前沿(UPF),从而获取UPF和CPF的位置信息;在第二阶段,设计一种分类方法,根据UPF与CPF的位置对CMOP进行分类,从而对不同类型的CMOP执行特定的进化策略;此外,提出一种随机扰动策略,在副种群进化到CPF附近时,对它进行随机扰动以产生一些位于CPF上的个体,从而促进主种群在CPF上的收敛与分布。把所提算法与6个具有代表性的算法:CMOES(Constrained Multi-objective Optimization based on Even Search)、dp-ACS(dual-population evolutionary algorithm based on Adaptive Constraint Strength)、c-DPEA(DualPopulation based Evolutionary Algorithm for constrained multi-objective optimization)、CAEAD(Constrained Evolutionary Algorithm based on Alternative Evolution and Degeneration)、BiCo(evolutionary algorithm with Bidirectional Coevolution)和DDCMOEA(Dual-stage Dual-population Evolutionary Algorithm for Constrained Multiobjective Optimization)在LIRCMOP和DASCMOP两个测试集上进行实验比较。实验结果表明,DPDSEA在23个问题中取得了15个最优反转世代距离(IGD)值和12个最优超体积(HV)值,展现了DPDSEA在处理复杂CMOP时显著的性能优势。
文摘针对光照强度不均匀造成光伏阵列的输出曲线为多峰曲线,传统最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制算法不能跟踪到全局最大功率的问题,文章提出一种基于改进麻雀搜索算法(Improved the Sparrow Search Algorithm,ISSA)和扰动观察法(Perturbation and Observation Method,P&O)的光储发电系统MPPT控制方法。首先,在跟踪前期,采用混沌映射方式增加ISSA种群多样性,提升算法广泛搜索能力。为了防止算法陷入局部最优,利用萤火虫扰动算法对麻雀个体进行扰动更新;其次,在跟踪后期,使用P&O防止系统在最大功率点附近振荡,保证最大功率点稳定输出;最后,经过算例分析,所提MPPT控制方法实现了不同场景下的快速跟踪、精准输出,能够很好应用地于光储混合发电系统中。
文摘差分隐私凭借其强大的隐私保护能力被应用在随机森林算法解决其中的隐私泄露问题,然而,直接将差分隐私应用在随机森林算法会使模型的分类准确率严重下降.为了平衡隐私保护和模型准确性之间的矛盾,提出了一种高效的差分隐私随机森林训练算法eDPRF(efficient differential privacy random forest).具体而言,该算法设计了决策树构建方法,通过引入重排翻转机制高效地查询输出优势,进一步设计相应的效用函数实现分裂特征以及标签的精准输出,有效改善树模型在扰动情况下对于数据信息的学习能力.同时基于组合定理设计了隐私预算分配的策略,通过不放回抽样获得训练子集以及差异化调整内部预算的方式提高树节点的查询预算.最后,通过理论分析以及实验评估,表明算法在给定相同隐私预算的情况下,模型的分类准确度优于同类算法.
文摘近年来如何刻画国际金融风险对中国市场的影响,成为学术界的热门热点之一。已有文献大多集中于研究国际股票市场之间的风险溢出效应,较少关注国际股票市场对中国期权市场的风险外溢效应。本文将标普500ETF走势嵌入上证50ETF的收益率过程,构建IFR_BS模型(BS Model with the Impact of International Financial Risk);然后应用特征函数微扰法和Fourier-Cosine定价方法,推导出该模型下欧式期权的近似解析定价公式。数值实验和实证结果表明:(1)IFR_BS模型可以较好地刻画上证50ETF收益率分布的“尖峰”、“肥尾”和“有偏”等统计特征。(2)考虑国际金融风险溢价的IFR_BS模型下的期权定价公式,可以解决BS模型对短到期期权尤其是短到期深度OTM期权估值不足的问题。
文摘最大功率点跟踪技术(Maximum Power Point Tracking, MPPT)是光伏发电系统中关键技术研究的热点之一。针对传统扰动观察法跟踪速度和精度无法兼顾的问题,文中提出了一种以功率变化量为步长控制量的自适应变步长扰动观察法,通过判断功率变化趋势,对远离最大功率点,采用大步长逼近;靠近最大功率点,采用小步长逼近。建立太阳能光伏电池数学模型得到其输出特性曲线,再利用MATLAB/Simulink搭建基于Boost电路的MPPT仿真模型,最后经仿真验证了所提出算法的稳定性、快速性和准确性,它比传统算法具有更好的MPPT暂态性能。
文摘针对传统的最大功率点跟踪MPPT(maximum power point tracking)方法在部分遮阴条件下陷入局部最优而失效,且常见的智能优化算法往往存在收敛精度差、收敛速度慢、系统稳定性不高等问题,提出1种基于旗鱼优化SFO(sailfish optimization)算法与扰动观察P&O(perturbation and observation)法混合控制的光伏系统最大功率跟踪策略。SFO算法同时使用旗鱼(捕食者)和沙丁鱼(猎物)2个种群,可保证粒子在全局空间探索。所提混合算法先利用SFO算法快速跟踪到最大功率点附近,再利用小步长P&O法对最大功率点进行精细搜索,最后利用分段步长的方法同时兼顾MPPT搜索速度和搜索精度的要求。仿真结果表明,所提混合控制策略有效提升了控制系统的响应速度及跟踪精度,提升了系统的稳定性。