期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
High Thermoelectric Figure of Merit of Ag8SnS6 Component Prepared by Electrodeposition Technique
1
作者 TAHER Ghrib AMAL Lafy Al-Otaibi +2 位作者 MUNIRAH Abdullah Almessiere IBTISSEM Ben Assaker RADHOUANE Chtourou 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第12期126-130,共5页
A new thermoelectric material Ag8SnS6, with ultra-low thermal conductivity in thin film shape, is prepared on indium tin oxide coated g/ass (ITO) substrates using a chemical process via the electrodeposition techniq... A new thermoelectric material Ag8SnS6, with ultra-low thermal conductivity in thin film shape, is prepared on indium tin oxide coated g/ass (ITO) substrates using a chemical process via the electrodeposition technique. The structural, thermal and electrical properties are studied and presented in detail, which demonstrate that the material is of semiconductor type, orthorhombic structure, with a band gap in the order of 1.56eV and a free carrier concentration of 1.46 × 10^17 cm-3. The thermal conductivity, thermal diffusivity, thermal conduction mode, Seebeck coefficient and electrical conductivity are determined using the photo-thermal deflection technique combined with the Boltzmann transport theory and Cahill's model, showing that the AgsSnS6 material has a low thermal conductivity of 3.8 Wm - 1K- 1, high electrical conductivity of 2.4 × 10^5 Sm- 1, Seebeck coefficient of -180μVK-1 and a power factor of 6.9mWK-2m-1, implying that it is more efficient than those obtained in recently experimental investigations for thermoelectric devices. 展开更多
关键词 figure High thermoelectric figure of merit of Ag8SnS6 Component Prepared by Electrodeposition Technique Ag SnS
在线阅读 下载PDF
Advances in thermoelectric(GeTe)_(x)(AgSbTe_(2))_(100-x)
2
作者 Hongxia Liu Xinyue Zhang +1 位作者 Wen Li Yanzhong Pei 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期31-38,共8页
The(GeTe)_(x)(AgSbTe_(2))_(100-x)alloys,also called TAGS-x in short,have long been demonstrated as a promising candidate for thermoelectric applications with successful services as the p-type leg in radioisotope therm... The(GeTe)_(x)(AgSbTe_(2))_(100-x)alloys,also called TAGS-x in short,have long been demonstrated as a promising candidate for thermoelectric applications with successful services as the p-type leg in radioisotope thermoelectric generators for space missions.This largely stems from the complex band structure for a superior electronic performance and strong anharmonicity for a low lattice thermal conductivity.Utilization of the proven strategies including carrier concentration optimization,band and defects engineering,an extraordinary thermoelectric figure of merit,zT,has been achieved in TAGS-based alloys.Here,crystal structure,band structure,microstructure,synthesis techniques and thermoelectric transport properties of TAGS-based alloys,as well as successful strategies for manipulating the thermoelectric performance,are surveyed with opportunities for further advancements.These strategies involved are believed to be in principle applicable for advancing many other thermoelectrics. 展开更多
关键词 thermoelectric TAGS band structure lattice thermal conductivity thermoelectric figure of merit
在线阅读 下载PDF
Thermoelectric properties of Sr_(0.61)Ba_(0.39)Nb_2O_(6-δ) ceramics in different oxygen-reduction conditions
3
作者 李宜 刘剑 +4 位作者 王春雷 苏文斌 祝元虎 李吉超 梅良模 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期349-354,共6页
The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are do... The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high- temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be -0.19 at 1073 K in the heaviest oxygen reduced sample. 展开更多
关键词 Sr0.61Ba0.39Nb2O6-δ electrical transport mechanism thermoelectric figure of merit thermal conductivity
在线阅读 下载PDF
Thermoelectric properties of two-dimensional hexagonal indium–VA
4
作者 毕京云 韩利红 +3 位作者 王倩 伍力源 屈贺如歌 芦鹏飞 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期502-509,共8页
The electrical properties and thermoelectric(TE) properties of monolayer In–VA are investigated theoretically by combining first-principles method with Boltzmann transport theory. The ultralow intrinsic thermal con... The electrical properties and thermoelectric(TE) properties of monolayer In–VA are investigated theoretically by combining first-principles method with Boltzmann transport theory. The ultralow intrinsic thermal conductivities of 2.64 W·m^(-1)·K^(-1)(InP), 1.31 W·m^(-1)·K^(-1)(InAs), 0.87 W·m^(-1)·K^(-1)(InSb), and 0.62 W·m^(-1) K^(-1)(InBi) evaluated at room temperature are close to typical thermal conductivity values of good TE materials(κ 〈 2 W·m^(-1)·K^(-1)). The maximal ZT values of 0.779, 0.583, 0.696, 0.727, and 0.373 for InN, InP, InAs, InSb, and InBi at p-type level are calculated at 900 K,which makes In–VA potential TE material working at medium-high temperature. 展开更多
关键词 thermoelectric properties two-dimensional In–VA figure of merit
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部