The equilibrium lattice parameters, electronic structure, bulk modulus, Debye temperature, heat capacity and Gibbs energy of TiB and TiB2 were investigated using the pseudopotential plane-wave method based on density ...The equilibrium lattice parameters, electronic structure, bulk modulus, Debye temperature, heat capacity and Gibbs energy of TiB and TiB2 were investigated using the pseudopotential plane-wave method based on density functional theory (DFT) and the improved quasi-harmonic Debye method. The results show that the total density of states (DOS) of TiB2 is mainly provided by the orbit hybridization of Ti-3d and B-2p states, and the total DOS of TiB is mainly provided by the hybrids bond of Ti-3d and B-2p below the Fermi level and Ti—Ti bond up to the Fermi level. The Ti—B hybrid bond in TiB2 is stronger than that in TiB. Finally, the enthalpy of formation at 0 K, heat capacity and Gibbs free energy of formation at various temperatures were determined. The calculated results are in excellent agreement with the available experimental data.展开更多
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based o...Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based on the density functional theory. The calculated results of heat of formation indicate that AI2Y phase has the strongest alloying ability. The calculated thermodynamic properties show that the thermal stability of these compounds gradually increases in the order ofMgl7Al12, A12Y and Al4Ba phases. Y or Ba addition to the Mg-Al alloys could improve the heat resistance. The calculated bulk modulus B, shear modulus G, elastic modulus E and Poisson ratio v show that the adding Y or Ba to Mg-Al alloys could promote the brittleness and stiffness, and reduce tenacity and plasticity by forming Al4Ba and Al2Y phases. The calculated cohesive energy and density of state (DOS) show that Al2Y has the strongest structural stability, then AlaBa and finally Mg17Al12. The calculated electronic structures show that Al2Y has the strongest structure stability because of the strong ionic bonds and covalent bonds combined action.展开更多
The ilvaite-bearing skarn associations in the Galinge skarn deposit were studied to determine their physicochemical formation conditions.A thermodynamic model setting pressure of 50 MPa(Pf=Ps=50 MPa)was set up to trac...The ilvaite-bearing skarn associations in the Galinge skarn deposit were studied to determine their physicochemical formation conditions.A thermodynamic model setting pressure of 50 MPa(Pf=Ps=50 MPa)was set up to trace the skarn evolution.Petrographic evidence for replacement of garnet and magnetite by ilvaite in the early retrograde stage(Stage I)combined with thermodynamic modeling suggests that the alteration may have occurred at 400470°C under moderately high fO withΔlgfO(HM)ranges from 4 to 4.2.The model is based on a maximum 22 pressure of 50 MPa calculated from magmatic amphibole geobarometer.The continuous breakdown of ilvaite with quartz to form ferro-actinolite and magnetite occur in the late retrograde stage(Stage II).The reactions occurred at 400440°C under moderate fO(ΔlgfO(HM):4 to 4.4).In Stage III,the breakdown of ilvaite to form calcite,pyrite 22 and ferroactinolite depends on XCO which can be estimated to be in a range of 0.005 to 0.05,and the reaction would 2 occur at higher temperatures with increasing XCO.Under these conditions,the breakdown occurs at 270350°C and 2 low fO(ΔlgfO(HM):up to 5.2).The thermodynamic model for continuous evolution from Stage I to Stage III 22 completely records the conditions of the retrograde alteration,which is inconsistent with the thermobarometry imprints of fluid inclusions.Therefore,the petrography and phase relations of ilvaite are useful indicators of reaction conditions in various skarn deposit types.展开更多
The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that o...The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that of C_(12) and C_(44). Specifically, higher pressure leads to greater bulk modulus(B), shear modulus(G), and elastic modulus(E). We predict B/G and anisotropy factor A based on the calculated elastic constants. The Debye temperature also increases with increasing pressure. Based on the quasi-harmonic Debye model, we examined the thermodynamic properties. These properties include the normalized volume(V/V_0), bulk modulus(B), heat capacity(C_v), thermal expansion coefficient(α), and Debye temperature(■). Finally, the electronic structures associated with the density of states(DOS) and Mulliken population are analyzed.展开更多
基金Project(07JJ3102)supported by the Natural Science Foundation of Hunan Province,ChinaProject(k0902132-11)supported by the Changsha Municipal Science and Technology,China
文摘The equilibrium lattice parameters, electronic structure, bulk modulus, Debye temperature, heat capacity and Gibbs energy of TiB and TiB2 were investigated using the pseudopotential plane-wave method based on density functional theory (DFT) and the improved quasi-harmonic Debye method. The results show that the total density of states (DOS) of TiB2 is mainly provided by the orbit hybridization of Ti-3d and B-2p states, and the total DOS of TiB is mainly provided by the hybrids bond of Ti-3d and B-2p below the Fermi level and Ti—Ti bond up to the Fermi level. The Ti—B hybrid bond in TiB2 is stronger than that in TiB. Finally, the enthalpy of formation at 0 K, heat capacity and Gibbs free energy of formation at various temperatures were determined. The calculated results are in excellent agreement with the available experimental data.
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
基金Project(2011DFA50520) supported by the International Cooperation of Ministry of Science and Technology of ChinaProject(50975263) supported by the National Natural Science Foundation of ChinaProject(2010-78) supported by the Shanxi Provincial Foundation for Returned Scholars,China
文摘Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based on the density functional theory. The calculated results of heat of formation indicate that AI2Y phase has the strongest alloying ability. The calculated thermodynamic properties show that the thermal stability of these compounds gradually increases in the order ofMgl7Al12, A12Y and Al4Ba phases. Y or Ba addition to the Mg-Al alloys could improve the heat resistance. The calculated bulk modulus B, shear modulus G, elastic modulus E and Poisson ratio v show that the adding Y or Ba to Mg-Al alloys could promote the brittleness and stiffness, and reduce tenacity and plasticity by forming Al4Ba and Al2Y phases. The calculated cohesive energy and density of state (DOS) show that Al2Y has the strongest structural stability, then AlaBa and finally Mg17Al12. The calculated electronic structures show that Al2Y has the strongest structure stability because of the strong ionic bonds and covalent bonds combined action.
基金Projects(41172076,41802080)supported by the National Natural Science Foundation of ChinaProject(1212011085528)supported by Geological Survey Program from the China Geological Survey+3 种基金Project(2019CX035)supported by Innovation-driven Plan of Central South University,ChinaProject(201411025)supported by the Scientific Research Fund from Ministry of Land and Re-sources,ChinaProject(201309)supported by the Program of High-level Geological Talents,ChinaProject(201112)supported by the Youth Geological Talents of the China Geological Survey
文摘The ilvaite-bearing skarn associations in the Galinge skarn deposit were studied to determine their physicochemical formation conditions.A thermodynamic model setting pressure of 50 MPa(Pf=Ps=50 MPa)was set up to trace the skarn evolution.Petrographic evidence for replacement of garnet and magnetite by ilvaite in the early retrograde stage(Stage I)combined with thermodynamic modeling suggests that the alteration may have occurred at 400470°C under moderately high fO withΔlgfO(HM)ranges from 4 to 4.2.The model is based on a maximum 22 pressure of 50 MPa calculated from magmatic amphibole geobarometer.The continuous breakdown of ilvaite with quartz to form ferro-actinolite and magnetite occur in the late retrograde stage(Stage II).The reactions occurred at 400440°C under moderate fO(ΔlgfO(HM):4 to 4.4).In Stage III,the breakdown of ilvaite to form calcite,pyrite 22 and ferroactinolite depends on XCO which can be estimated to be in a range of 0.005 to 0.05,and the reaction would 2 occur at higher temperatures with increasing XCO.Under these conditions,the breakdown occurs at 270350°C and 2 low fO(ΔlgfO(HM):up to 5.2).The thermodynamic model for continuous evolution from Stage I to Stage III 22 completely records the conditions of the retrograde alteration,which is inconsistent with the thermobarometry imprints of fluid inclusions.Therefore,the petrography and phase relations of ilvaite are useful indicators of reaction conditions in various skarn deposit types.
基金Project(51574176)supported by the National Natural Science Foundation of ChinaProject(143020142-S)supported by the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province(TYAL),ChinaProject(201603D421028)supported by the Key Research and Development Program of Shanxi Province(International Cooperative Project),China
文摘The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that of C_(12) and C_(44). Specifically, higher pressure leads to greater bulk modulus(B), shear modulus(G), and elastic modulus(E). We predict B/G and anisotropy factor A based on the calculated elastic constants. The Debye temperature also increases with increasing pressure. Based on the quasi-harmonic Debye model, we examined the thermodynamic properties. These properties include the normalized volume(V/V_0), bulk modulus(B), heat capacity(C_v), thermal expansion coefficient(α), and Debye temperature(■). Finally, the electronic structures associated with the density of states(DOS) and Mulliken population are analyzed.