期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Physical,mechanical and thermal properties of vacuum sintered HUST-1 lunar regolith simulant 被引量:2
1
作者 Wenbin Han Yan Zhou +2 位作者 Lixiong Cai Cheng Zhou Lieyun Ding 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1243-1257,共15页
Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and th... Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and thermal properties of sintered lunar regolith are vital performance indices for the structural design of a lunar base and analysis of many critical mechanical and thermal issues.In this study,the HUST-1 lunar regolith simulant(HLRS)was sintered at 1030,1040,1050,1060,1070,and 1080℃.The effect of sintering temperature on the compressive strength was investigated,and the exact value of the optimum vacuum sintering temperature was determined between 1040 and 1060℃.Then,the microstructure and material composition of vacuum sintered HLRS at different temperatures were characterized.It was found that the sintering temperature has no significant effect on the mineral composition in the temperature range of 1030-1080℃.Besides,the heat capacity,thermal conductivity,and coefficient of thermal expansion(CTE)of vacuum sintered HLRS at different temperatures were investigated.Specific heat capacity of sintered samples increases with the increase of test temperature within the temperature range from-75 to 145℃.Besides,the thermal conductivity of the sintered sample is proportional to density.Finally,the two temperatures of 1040 and 1050℃were selected for a more detailed study of mechanical properties.The results showed that compressive strength of sintered sample is much higher than tensile strength.This study reveals the effects of sintering temperature on the physical,mechanical and thermal properties of vacuum sintered HLRS,and these material parameters will provide support for the construction of future lunar bases. 展开更多
关键词 Lunar base Lunar regolith simulant Vacuum sintering Physical properties Mechanical properties thermal properties
在线阅读 下载PDF
Effect of matrix thermal properties on laser-induced plasma
2
作者 Yuheng Shan An Li +4 位作者 Xinyu Zhang Wen Yi Ying Zhang Xiaodong Liu Ruibin Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期331-336,共6页
The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals an... The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals and aluminum alloys to measure plasma temperature and electron density through laser-induced breakdown spectroscopy,in order to investigate the effect of matrix thermal properties on laser-induced plasma.In pure metals,a significant negative linear correlation was observed between the matrix thermal storage coefficient and plasma temperature,while a weak correlation was observed with electron density.The results indicate that metals with low thermal conductivity or specific heat capacity require less laser energy for thermal diffusion or melting and evaporation,resulting in higher ablation rates and higher plasma temperatures.However,considering ionization energy,thermal effects may be a secondary factor affecting electron density.The experiment of aluminum alloy further confirms the influence of thermal conductivity on plasma temperature and its mechanism explanation. 展开更多
关键词 laser-induced plasma thermal properties matrix effect thermal storage coefficient plasma temperature
在线阅读 下载PDF
Density functional theory study of structural,electronic,and thermal properties of Pt,Pd,Rh,Ir,Os and PtPdX(X=Ir,Os,and Rh)alloys 被引量:1
3
作者 Shabbir Ahmed Muhammad Zafar +1 位作者 M Shakilt M A Choudhary 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期298-306,共9页
The structural, electronic, mechanical, and thermal properties of Pt, Pd, Rh, Ir, Os metals and their alloys PtPdX (X = Ir, Os and Rh) are studied systematically using ab initio density functional theory. The ground... The structural, electronic, mechanical, and thermal properties of Pt, Pd, Rh, Ir, Os metals and their alloys PtPdX (X = Ir, Os and Rh) are studied systematically using ab initio density functional theory. The groundstate properties such as lattice constant and bulk modulus are calculated to find the equilibrium atomic position for stable alloys. The electronic band structure and density of states are calculated to study the electronic behavior of metals on making their alloys. The electronic properties substantiate the metallic behavior for all studied materials. The firstprinciples density functional perturbation theory as implemented in quasi-harmonic approximation is used for the calculations of thermal properties. We have calculated the thermal properties such as the Debye temperature, vibrational energy, entropy and constant-volume specific heat. The calculated properties are compared with the previously reported experimental and theoretical data for metals and are found to be in good agreement. Calculated results for alloys could not be compared because there is no data available in the literature with such alloy composition. 展开更多
关键词 ELECTRONIC structural and thermal properties platinum group metals
在线阅读 下载PDF
Thermal properties of high-k Hf_(1-x)Si_xO_2
4
作者 司凤娟 路文江 汤富领 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期431-438,共8页
Classical atomistic simulations based on the lattice dynalnics theory and the Born core-shell model are performed to systematically study the crystal structure and thermal properties of high-k Hfl-xSixO2. The coeffici... Classical atomistic simulations based on the lattice dynalnics theory and the Born core-shell model are performed to systematically study the crystal structure and thermal properties of high-k Hfl-xSixO2. The coefficients of thermal expansion, specific heat, Griineisen parameters, phonon densities of states and Debye temperatures are calculated at different temperatures and for different Si-doping concentrations. With the increase of the Si-doping concentration, the lattice constant decreases. At the same time, both the coefficient of thermal expansion and the specific heat at a constant volume of Hf1-mSixO2 also decreases. The Griineisen parameter is about 0.95 at temperatures less than 100 K. Compared with Si-doped HfO2, pure HfO2 has a higher Debye temperature when the temperature is less than 25 K, while it has lower Debye temperature when the temperature is higher than 50 K. Some simulation results fit well with the experimental data. We expect that our results will be helpful for understanding the local lattice structure and thermal properties of Hf1-mSixO2. 展开更多
关键词 thermal properties lattice structure high-k material
在线阅读 下载PDF
The impact of high hydrostatic pressure treatment time on the structure,gelatinization and thermal properties and in vitro digestibility of oat starch 被引量:8
5
作者 Jing Zhang Meili Zhang +2 位作者 Xue Bai Yakun Zhang Chen Wang 《Grain & Oil Science and Technology》 2022年第1期1-12,共12页
As a non-thermal processing technology,high hydrostatic pressure(HHP)can be used for starch modification without affecting the quality and flavour constituents.The effect of HHP on starch is closely related to the tre... As a non-thermal processing technology,high hydrostatic pressure(HHP)can be used for starch modification without affecting the quality and flavour constituents.The effect of HHP on starch is closely related to the treatment time of HHP.In this paper,we investigated the impacts of HHP treatment time(0,5,10,15,20,25,30 min)on the microstructure,gelatinization and thermal properties as well as in vitro digestibility of oat starch by scanning electron microscopy,X-ray diffraction,Fourier transform infrared spectroscopy,13C NMR and differential scanning calorimeter.Results showed that 5-min HHP treatment led to deformation and decreases in short-range ordered and doublehelix structures of oat starch granules,and further extending the treatment time to 15 min or above caused the formation of a gelatinous connection zone,increase of particle size,disintegration of short-range ordered and double-helix structures,and crystal structure change from A type to V type,indicating gelatinization occurred.Longer treatment time also resulted in the reduction in both the viscosity and the stability of oat starch.These indicated that HHP treatment time greatly influenced the microstructure of oat starch,and the oat starch experienced crystalline destruction(5 min),crystalline disintegration(15 min)and gelatinization(>15 min)during HHP treatment.Results of in vitro digestibility showed that the rapidly digestible starch(RDS)content declined first after treatment for 5 to 10 min then rose with the time extending from 15 to 30 min,indicating that longer pressure treatment time was unfavourable to the health benefits of oat starch for humans with diabetes and cardiovascular disease.Therefore,the 500-MPa treatment time for oat starch is recommended not more than 15 min.This study provides theoretical guidance for the application of HHP technology in starch modification and development of health foods. 展开更多
关键词 High hydrostatic pressure Oat starch STRUCTURE Gelatinization property thermal property In vitro digestibility
在线阅读 下载PDF
Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite 被引量:3
6
作者 Zi-Rui Jia Zhen-Guo Gao +3 位作者 Di Lan Yong-Hong Cheng Guang-Lei Wu Hong-Jing Wu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期332-339,共8页
Epoxy-based composites containing montmorillonite(MMT)modified by silylation reaction withγ-aminopropyltriethoxysilane(γ-APTES)and 3-(glycidyloxypropyl)trimethoxysilane(GPTMS)are successfully prepared.The effects of... Epoxy-based composites containing montmorillonite(MMT)modified by silylation reaction withγ-aminopropyltriethoxysilane(γ-APTES)and 3-(glycidyloxypropyl)trimethoxysilane(GPTMS)are successfully prepared.The effects of filler loading and surface modification on the electrical and thermal properties of the epoxy/MMT composites are investigated.Compared with the pure epoxy resin,the epoxy/MMT composite,whether MMT is surface-treated or not,shows low dielectric permittivity,low dielectric loss,and enhanced dielectric strength.The MMT in the epoxy/MMT composite also influences the thermal properties of the composite by improving the thermal conductivity and stability.Surface functionalization of MMT not only conduces to the better dispersion of the nanoparticles,but also significantly affects the electric and thermal properties of the hybrid by influencing the interfaces between MMT and epoxy resin.Improved interfaces are good for enhancing the electric and thermal properties of nanocomposites.What is more,the MMT modified with GPTMS rather thanγ-APTES is found to have greater influence on improving the interface between the MMT filler and polymer matrices,thus resulting in lower dielectric loss,lower electric conductivity,higher breakdown strength,lower thermal conductivity,and higher thermal stability. 展开更多
关键词 modified epoxy resin surface modification electric property thermal property
在线阅读 下载PDF
Thermal properties of a two-dimensional intrinsically curved semiflexible biopolymer
7
作者 周子聪 王延颋 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期592-597,共6页
We study the behaviors of mean end-to-end distance and specific heat of a two-dimensional intrinsically curved semiflexible biopolymer with a hard-core excluded volume interaction. We find the mean square end-to-end d... We study the behaviors of mean end-to-end distance and specific heat of a two-dimensional intrinsically curved semiflexible biopolymer with a hard-core excluded volume interaction. We find the mean square end-to-end distance R2 N∝ Nβ at large N, with N being the number of monomers. Bothβ and proportional constant are dependent on the reduced bending rigidity κ and intrinsic curvature c. The larger the c, the smaller the proportional constant, and 1.5 ≥β ≥ 1. Up to a moderate κ = κc, or down to a moderate temperature T = Tc, β = 1.5, the same as that of a self-avoiding random walk, and the larger the intrinsic curvature, the smaller the κc. However, at a large κ or a low temperature,β is close to 1, and the conformation of the biopolymer can be more compact than that of a random walk. There is an intermediate regime with 1.5 〉β 〉 1 and the transition fromβ = 1.5 toβ= 1 is smooth. The specific heat of the system increases smoothly with increasing κ or there is no peak in the specific heat. Therefore, a nonvanishing intrinsic curvature seriously affects the thermal properties of a semiflexible biopolymer, but there is no phase transition in the system. 展开更多
关键词 thermal property semiflexible biopolymer intrinsic curvature
在线阅读 下载PDF
Innovative dispersion techniques of graphene nanoplatelets(GNPs)through mechanical stirring and ultrasonication:Impact on morphological,mechanical,and thermal properties of epoxy nanocomposites
8
作者 Vasi Uddin Siddiqui S.M.Sapuan Mohd Roshdi Hassan 《Defence Technology(防务技术)》 2025年第1期13-25,共13页
Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological beh... Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential. 展开更多
关键词 Graphene nanoplatelets Epoxy Nanocomposites Mechanical properties thermal properties Mechanical stirrer Sonication
在线阅读 下载PDF
Thermal and textural properties of extruded rice affect its cooking performances and the texture of the steamed extruded rice
9
作者 Yulong Wang Lingjie Jiang +5 位作者 Kangru Cui Zhonghua Gu Yunfei Yang Renyong Zhao Xinwei Wang Hongxin Jiang 《Grain & Oil Science and Technology》 CAS 2024年第4期237-245,共9页
Extruded rice has increasingly gained popularity in the market due to its convenience and acceptable texture.The objective of this study was to understand how the physicochemical,thermal,and textural properties of the... Extruded rice has increasingly gained popularity in the market due to its convenience and acceptable texture.The objective of this study was to understand how the physicochemical,thermal,and textural properties of the extruded rice affected its cooking properties and texture of the cooked one.It was found that air trapped in the grains during extrusion reduced the transparency of extruded rice.More air trapped in the grains reduced the true density of the extruded rice,which in turn decreased the hardness of extruded rice.A looser internal structure of extruded rice grain,as indicated by the lower true density,resulted in a faster hydration and shorter optimum cooking time.Extruded rices showed two thermal-transition peaks,with peak 1 from 93.3℃ to 112.8℃ and peak 2 from 107.5℃ to 132.5℃.The increased hardness of extruded rice led to increases in its thermaltransition temperatures,longer optimum steaming time,and decreases in its water absorption and cooking loss,which resulted in an increase in the hardness and a reduction in the adhesiveness of the steamed one.This study provides insights into the key factors determining the eating quality of extruded rice,which is beneficial for food scientists in developing premium extruded rice. 展开更多
关键词 Extruded rice Textural properties Cooking properties thermal properties Pasting properties
在线阅读 下载PDF
Structural and optical properties of thermally reduced graphene oxide for energy devices 被引量:3
10
作者 Ayesha Jamil Faiza Mustafa +2 位作者 Samia Aslam Usman Arshad Muhammad Ashfaq Ahmad 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期346-352,共7页
Natural intercalation of the graphite oxide, obtained as a product of Hummer's method, via ultra-sonication of water dispersed graphite oxide has been carried out to obtain graphene oxide(GO) and thermally reduced ... Natural intercalation of the graphite oxide, obtained as a product of Hummer's method, via ultra-sonication of water dispersed graphite oxide has been carried out to obtain graphene oxide(GO) and thermally reduced graphene oxide(RGO).Here we report the effect of metallic nitrate on the oxidation properties of graphite and then formation of metallic oxide(MO) composites with GO and RGO for the first time. We observed a change in the efficiency of the oxidation process as we replaced the conventionally used sodium nitrate with that of nickel nitrate Ni(NO_3)_2, cadmium nitrate Cd(NO_3)_2,and zinc nitrate Zn(NO_3)_2. The structural properties were investigated by x-ray diffraction and observed the successful formation of composite of MO–GO and MO–RGO(M = Zn, Cd, Ni). We sought to study the effect on the oxidation process through optical characterization via UV-Vis spectroscopy and Fourier Transform Infrared(FTIR) spectroscopy.Moreover, Thermo Gravimetric Analysis(TGA) was carried out to confirm 〉 90% weight loss in each process thus proving the reliability of the oxidation cycles. We have found that the nature of the oxidation process of graphite powder and its optical and electrochemical characteristics can be tuned by replacing the sodium nitrate(NaNO_3) by other metallic nitrates as Cd(NO_3)_2, Ni(NO_3)_2, and Zn(NO_3)_2. On the basis of obtained results, the synthesized GO and RGO may be expected as a promising material in antibacterial activity and in electrodes fabrication for energy devices such as solar cell, fuel cell,and super capacitors. 展开更多
关键词 thermal properties of graphene oxide and reduced graphene oxide optical properties structuralproperties fuel cell composite materials
在线阅读 下载PDF
First-principles investigation of the effects of strain on elastic thermal, and optical properties of CuGaTe2 被引量:2
11
作者 薛丽 任一鸣 +1 位作者 何俊荣 徐四六 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期324-328,共5页
Based on the density functional theory, the influences of strain on structural, elastic, thermal and optical properties of CuGaTe2 are discussed in detail. It is found that the tensile strain on CuGaTe2 is beneficial ... Based on the density functional theory, the influences of strain on structural, elastic, thermal and optical properties of CuGaTe2 are discussed in detail. It is found that the tensile strain on CuGaTe2 is beneficial to the decrease of lattice thermal conductivity by reducing the mean sound velocity and Debye temperature. Moreover, all strained and unstrained CuGaTe2 exhibit rather similar optical characters. But the tensile strain improves the ability to absorb sunlight in the visible range.These research findings can give hints for designing thermoelectric and photovoltaic devices. 展开更多
关键词 elastic constants thermal properties optical properties FIRST-PRINCIPLES
在线阅读 下载PDF
Preparation and Analysis of Thermal and Mechanical Properties of HTPB-type Polyurethane Elastomer Containing Paraffin Microcapsules 被引量:1
12
作者 Ding Hongjing Zhao Tianbo Wang Lili 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第3期28-32,共5页
Two microcapsules with different paraffin phase changes were prepared using styrene-divinylbenzene copolymer and melamine resin as the capsule wall and paraffin(with a melting point of 50°C)as the capsule core.Th... Two microcapsules with different paraffin phase changes were prepared using styrene-divinylbenzene copolymer and melamine resin as the capsule wall and paraffin(with a melting point of 50°C)as the capsule core.The microcapsules were directly added to the hydroxyl terminated polybutadiene(HTPB)-polyurethane elastomer system to fabricate the polyurethane elastomer composites.The thermodynamic stability and mechanical properties of the material were then studied.The results show that the thermal stability of the polyurethane elastomer does not decrease after adding paraffin phase change microcapsules,and the thermal stability of the polyurethane elastomer with melamine resin as the wall increases.Tensile strength increased from 367 kPa to 797 kPa,and compression strength increased from 245.9 N to 344.7 N.In addition,capsule walls comprised different monomers/paraffin microcapsules of the copolymer of styrene and divinylbenzene.The optimal mechanical property was obtained at a monomer/paraffin ratio of 1:1.The compression strength increased and the tensile strength decreased.The tensile strength of the microcapsule with melamine resin capsule wall and the compression strength of the microcapsule with polystyrene capsule wall were considerably improved. 展开更多
关键词 paraffin microcapsule HTPB-type polyurethane elastomer thermal property mechanical property
在线阅读 下载PDF
Effects of terbium sulfide addition on magnetic properties,microstructure and thermal stability of sintered Nd-Fe--B magnets 被引量:1
13
作者 李向斌 刘硕 +4 位作者 曹学静 周贝贝 陈岭 闫阿儒 严高林 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期423-426,共4页
To increase coercivity and thermal stability of sintered Nd–Fe–B magnets for high-temperature applications, a novel terbium sulfide powder is added into(Pr(0.25)Nd(0.75))(30.6)Cu(0.15)Fe(bal)B1(wt.%) b... To increase coercivity and thermal stability of sintered Nd–Fe–B magnets for high-temperature applications, a novel terbium sulfide powder is added into(Pr(0.25)Nd(0.75))(30.6)Cu(0.15)Fe(bal)B1(wt.%) basic magnets. The effects of the addition of terbium sulfide on magnetic properties, microstructure, and thermal stability of sintered Nd–Fe–B magnets are investigated.The experimental results show that by adding 3 wt.% Tb2S3, the coercivity of the magnet is remarkably increased by about 54% without a considerable reduction in remanence and maximum energy product. By means of the electron probe microanalyzer(EPMA) technology, it is observed that Tb is mainly present in the outer region of 2:14:1 matrix grains and forms a well-developed Tb-shell phase, resulting in enhancement of HA, which accounts for the coercivity enhancement.Moreover, compared with Tb2S3-free magnets, the reversible temperature coefficients of remanence(α) and coercivity(β) and the irreversible flux loss of magnetic flow(hirr) values of Tb2S3-added magnets are improved, indicating that the thermal stability of the magnets is also effectively improved. 展开更多
关键词 terbium sulfide magnetic property microstructure thermal stability
在线阅读 下载PDF
Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals 被引量:3
14
作者 Ahmed Nagaty Ahmed Mehaney Arafa H Aly 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第9期342-345,共4页
The current study investigates the influence of temperature on a one-dimensional piezoelectric phononic crystal using tunable resonant frequencies. Analytical and numerical examples are introduced to emphasize the inf... The current study investigates the influence of temperature on a one-dimensional piezoelectric phononic crystal using tunable resonant frequencies. Analytical and numerical examples are introduced to emphasize the influence of temperature on the piezoelectric phononic crystals. It was observed that the transmission spectrum of a one-dimensional phononic crystal containing a piezoelectric material(0.7 PMN-0.3 PT) can be changed drastically by an increase in temperature.The resonant peak can be shifted toward high or low frequencies by an increase or decrease in temperature, respectively.Therefore, we deduced that temperature can exhibit a large tuning in the phononic band gaps and in the local resonant frequencies depending on the presence of a piezoelectric material. Such result can enhance the harvesting energy from piezoelectric materials, especially those that are confined in a phononic crystal. 展开更多
关键词 phononic crystals resonant modes piezoelectric material thermal properties and temperature
在线阅读 下载PDF
Lattice vibration and thermodynamical properties of a single-layer graphene in the presence of vacancy defects 被引量:1
15
作者 黎莎 吕增涛 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期410-417,共8页
The phonon density of states (PDOS) and the thermodynamical properties including the heat capacity, the free energy, and the entropy of a single-layer graphene with vacancy defects have been studied theoretically. W... The phonon density of states (PDOS) and the thermodynamical properties including the heat capacity, the free energy, and the entropy of a single-layer graphene with vacancy defects have been studied theoretically. We first analytically derive the general formula of the lattice vibration frequency, and then numerically discuss the effect of the defects on the PDOS. Our results suggest that the vacancy defects will induce the sawtooth-like oscillation of the PDOS and the specific oscillation patterns depend on the concentration and the spatial distribution of the vacancies. In addition, it is verified that the vacancy defects will cause the increase of the beat capacity because of the vacancy-induced low-frequency resonant peak. Moreover, the influences of the vacancies on the free energy and the entropy are investigated. 展开更多
关键词 phonons in graphene thermal properties DEFECTS
在线阅读 下载PDF
First principle calculations of thermodynamic properties of pure graphene sheet and graphene sheets with Si,Ge,Fe,and Co impurities
16
作者 A Kheyri Z Nourbakhsh 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期289-295,共7页
The thermal properties of pure graphene and graphene-impurity (impurity = Fe, Co, Si, and Ge) sheets have been investigated at various pressures (0-7 GPa) and temperatures (0-900 K). Some basic thermodynamic qua... The thermal properties of pure graphene and graphene-impurity (impurity = Fe, Co, Si, and Ge) sheets have been investigated at various pressures (0-7 GPa) and temperatures (0-900 K). Some basic thermodynamic quantities such as bulk modulus, coefficient of volume thermal expansion, heat capacities at constant pressure and constant volume of these sheets as a function of temperature and pressure are discussed. Furthermore, the effect of the impurity density and tensile strain on the thermodynamic properties of these sheets are investigated. All of these calculations are performed based on the density functional theory and full quasi harmonic approximation. 展开更多
关键词 density functional theory GRAPHENE IMPURITY thermal properties
在线阅读 下载PDF
Structural, vibrational, optical, photoluminescence, thermal,dielectric, and mechanical studies on zinc(tris) thiourea sulfate single crystal: A noticeable effect of organic dye
17
作者 Mohd Shkir V Ganesh +2 位作者 S AlFaify I S Yahia Mohd Anis 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期304-312,共9页
In this work, uranine-dyed zinc(tris) thiourea sulfate(ZTS) monocrystals, 26 mm×15 mm×10 mm in size, were synthesized by the solution method at ambient temperature. Their purity, crystallinity, lattice p... In this work, uranine-dyed zinc(tris) thiourea sulfate(ZTS) monocrystals, 26 mm×15 mm×10 mm in size, were synthesized by the solution method at ambient temperature. Their purity, crystallinity, lattice parameters, and functional modes were studied by x-ray diffraction, Fourier transform-infrared spectroscopy(FT-IR), and FT-Raman spectroscopy analyses. The sodium ion content of the crystals from the dye was confirmed by elemental analysis. The diffused reflectance spectral analysis of the dyed crystal revealed a characteristic absorption band at 490 nm attributed to the presence of the dye. The calculated band gaps of the non-dyed and dyed crystals were 4.53 and 4.57 e V, respectively. A green emission peak at ~(512 ± 4) nm was observed in the photoluminescence spectrum of the uranine-dyed crystals. A differential scanning calorimetry study confirmed that the thermal stability improved owing to the addition of the dye. Dielectric and microhardness studies were conducted to examine the significant improvements in the corresponding properties of dyed crystals. The results demonstrated the competency of the dyed ZTS crystals for applications in optoelectronic devices. 展开更多
关键词 crystal growth dielectric properties luminescence thermal properties mechanical properties
在线阅读 下载PDF
First principle calculation of elastic and thermodynamic properties of stishovite
18
作者 刘勋 周显明 曾召益 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期425-430,共6页
Using ab initio plane-wave pseudo-potential density functional theory method, the elastic constants and band structures of stishovite were calculated. The calculated elastic constants under ambient conditions agree we... Using ab initio plane-wave pseudo-potential density functional theory method, the elastic constants and band structures of stishovite were calculated. The calculated elastic constants under ambient conditions agree well with previous experimental and theoretical data. C13, C33, C44, and C66 increase nearly linearly with pressure while C11 and C12 show irregularly changes with pressure over 20 GPa. The shear modulus (Cll-C12)/2 was observed to decrease drastically between 40 GPa and 50 GPa, indicating acoustic mode softening in consistency with the phase transition to CaC12-type structure around 50 GPa. The calculated band structures show no obvious difference at 0 and 80 GPa, being consistent with the high incompressibility of stishovite. With a quasi-harmonic Debye model, thermodynamic properties of stishovite were also calculated and the results are in good agreement with available experimental data. 展开更多
关键词 first principle elastic constants thermal properties quasi-harmonic Debye model
在线阅读 下载PDF
First-principles calculations of structural, electronic, and thermodynamic properties of ZnO_(1-x)S_x alloys
19
作者 Muhammad Zafar Shabbir Ahmed +1 位作者 M.Shakil M.A.Choudhary 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期394-400,共7页
In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are foun... In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are found to be improved when calculated by using LDA ~ U functional as compared with local density approximation (LDA). At various concentrations the ground-state properties are determined for bulk materials ZnO, ZnS, and their tertiary alloys in cubic zinc-blende phase. From the results, a minor difference is observed between the lattice parameters from Vegard's law and other calculated results, which may be due to the large mismatch between lattice parameters of binary compounds ZnO and ZnS. A small deviation in the bulk modulus from linear concentration dependence is also observed for each of these alloys. The ther- modynamic properties, including the phonon contribution to Helmholtz free energy △F, phonon contribution to internal energy △E, and specific iheat at constant-volume Cv, are calculated within quasi-harmonic approximation based on the calculated phonon dispersion relations. 展开更多
关键词 first principles calculations density functional theory (DFT) semiconductor materials structural electronic and thermal properties
在线阅读 下载PDF
Influence of Al^(3+) doping on the energy levels and thermal property of the 3.5MgO·0.5MgF_2·GeO_2:Mn^(4+) red-emitting phosphor
20
作者 苑琳琳 张晓松 +5 位作者 徐建萍 孙健 金含 刘晓娟 李霖霖 李岚 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期553-557,共5页
A series of Al3+-doped 3.5MgO·0.5MgF2·GeO2:Mn4+red-emitting phosphors is synthesized by high temperature solid-state reaction. The broad excitation band at 300 nm–380 nm, resulting from the4A2→4T1transitio... A series of Al3+-doped 3.5MgO·0.5MgF2·GeO2:Mn4+red-emitting phosphors is synthesized by high temperature solid-state reaction. The broad excitation band at 300 nm–380 nm, resulting from the4A2→4T1transition of Mn4+,exhibits a blue shift with the increase of Al2O3 content. The observation of the decreased Mn4+–O2-distance is explained by the crystal field theory. The temperature-dependent photoluminescence spectra with various amounts of Al2O3 content are comparatively measured and the calculation shows that the activation energy increases up to 0.41 eV at the Al2O3 content of 0.1 mol. The maximum phonon densities of state for these samples are calculated from Raman spectra and they are correlated with the thermal properties. 展开更多
关键词 PHOSPHORS PHOTOLUMINESCENCE thermal properties
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部