In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC...In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC60).We examined the effects of size,interface interaction coefficients,and thermal equilibrium time on the ITC of the GE/qHPC60 heterostructure.展开更多
Garnet Li_(7)La_(3)Zr_(2)O_(12)(LLZO)electrolytes have been recognized as a promising candidate to replace liquid/molten-state electrolytes in battery applications due to their exceptional performance,particularly Ga-...Garnet Li_(7)La_(3)Zr_(2)O_(12)(LLZO)electrolytes have been recognized as a promising candidate to replace liquid/molten-state electrolytes in battery applications due to their exceptional performance,particularly Ga-doped LLZO(LLZGO),which exhibits high ionic conductivity.However,the limited size of the Liþtransport bottleneck restricts its high-current discharging performance.The present study focuses on the synthesis of Ga^(3+)þand Ba^(2+)þco-doped LLZO(LLZGBO)and investigates the influence of doping contents on the morphology,crystal structure,Liþtransport bottleneck size,and ionic conductivity.In particular,Ga_(0.32)Ba_(0.15)exhibits the highest ionic conductivity(6.11E-2 S cm^(-1) at 550 C)in comparison with other compositions,which can be attributed to its higher-energy morphology,larger bottleneck and unique Liþtransport channel.In addition to Ba^(2+),Sr^(2+)þand Ca^(2+)have been co-doped with Ga3þinto LLZO,respectively,to study the effect of doping ion radius on crystal structures and the properties of electrolytes.The characterization results demonstrate that the easier Liþtransport and higher ionic conductivity can be obtained when the electrolyte is doped with larger-radius ions.As a result,the assembled thermal battery with Ga_(0.32)Ba_(0.15)-LLZO electrolyte exhibits a remarkable voltage platform of 1.81 V and a high specific capacity of 455.65 mA h g^(-1) at an elevated temperature of 525℃.The discharge specific capacity of the thermal cell at 500 mA amounts to 63%of that at 100 mA,showcasing exceptional high-current discharging performance.When assembled as prototypes with fourteen single cells connected in series,the thermal batteries deliver an activation time of 38 ms and a discharge time of 32 s with the current density of 100 mA cm^(-2).These findings suggest that Ga,Ba co-doped LLZO solid-state electrolytes with high ionic conductivities holds great potential for high-capacity,quick-initiating and high-current discharging thermal batteries.展开更多
The thermal conductivity of plasma-facing materials(PFM)exposed to intense radiation is a critical concern for the reliable usage of materials in fusion reactors.However,limited research has been performed regarding t...The thermal conductivity of plasma-facing materials(PFM)exposed to intense radiation is a critical concern for the reliable usage of materials in fusion reactors.However,limited research has been performed regarding the thermal conductivity of structures that rapidly change in a short time during collision cascade processes under irradiation.In this study,we employed the tight-binding(TB)method to investigate the electronic thermal conductivity(κ_(e))of tungsten-based systems during various cascading processes.We found thatκ_(e) values sharply decrease within the initial 0.3 picoseconds and then partially recover at a slow pace;this is closely linked to the evolution of defects and microstructural distortions.The increase in the initial kinetic energy of the primary knock-on atom and the presence of a high concentration of hydrogen atoms further decrease theκ_(e) values.Conversely,higher temperatures have a significant positive effect onκ_(e).Furthermore,the presence of a grain boundary∑5[001](130)substantially reducesκ_(e),whereas the absorption effect of point defects by the grain boundary has little influence onκ_(e) during cascades.Our findings provide a theoretical basis for evaluating changes in the thermal conductivity performance of PFMs during their usage in nuclear fusion reactors.展开更多
LiFePO_(4) is a cathode material with good thermal stability,but low thermal conductivity is a critical problem.In this study,we employ a machine learning potential approach based on first-principles methods combined ...LiFePO_(4) is a cathode material with good thermal stability,but low thermal conductivity is a critical problem.In this study,we employ a machine learning potential approach based on first-principles methods combined with the Boltzmann transport theory to investigate the influence of Na substitution on the thermal conductivity of LiFePO_(4) and the impact of Li-ion de-embedding on the thermal conductivity of Li_(3/4)Na_(1/4)FePO_(4),with the aim of enhancing heat dissipation in Li-ion batteries.The results show a significant increase in thermal conductivity due to an increase in phonon group velocity and a decrease in phonon anharmonic scattering by Na substitution.In addition,the thermal conductivity increases significantly with decreasing Li-ion concentration due to the increase in phonon lifetime.Our work guides the improvement of the thermal conductivity of Li FePO_4,emphasizing the crucial roles of both substitution and Li-ion detachment/intercalation for the thermal management of electrochemical energy storage devices.展开更多
As the size of transistors shrinks and power density increases,thermal simulation has become an indispensable part of the device design procedure.However,existing works for advanced technology transistors use simplifi...As the size of transistors shrinks and power density increases,thermal simulation has become an indispensable part of the device design procedure.However,existing works for advanced technology transistors use simplified empirical models to calculate effective thermal conductivity in the simulations.In this work,we present a dataset of size-dependent effective thermal conductivity with electron and phonon properties extracted from ab initio computations.Absolute in-plane and cross-plane thermal conductivity data of eight semiconducting materials(Si,Ge,GaN,AlN,4H-SiC,GaAs,InAs,BAs)and four metallic materials(Al,W,TiN,Ti)with the characteristic length ranging from 5 nm to 50 nm have been provided.Besides the absolute value,normalized effective thermal conductivity is also given,in case it needs to be used with updated bulk thermal conductivity in the future.展开更多
Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, ma...Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae.展开更多
A kind of n-type HoF_3-doped zinc oxide-based transparent conductive film has been developed by electron beam evaporation and studied under thermal annealing in air and vacuum at temperatures 100–500℃.Effective subs...A kind of n-type HoF_3-doped zinc oxide-based transparent conductive film has been developed by electron beam evaporation and studied under thermal annealing in air and vacuum at temperatures 100–500℃.Effective substitutional dopings of F to O and Ho to Zn are realized for the films with smooth surface morphology and average grain size of about 50 nm.The hall mobility,electron concentration,resistivity and work function for the asdeposited films are 47.89 cm^2/Vs,1.39×10^(20)cm^(-3),9.37×10^(-4)Ω·cm and 5.069 eV,respectively.In addition,the average transmittance in the visible region(400–700 nm)approximates to 87%.The HoF_3:ZnO films annealed in air and vacuum can retain good optoelectronic properties under 300℃,thereinto,more stable electrical properties can be found in the air-annealed films than in the vacuum-annealed films,which is assumed to be a result of improved nano-crystalline lattice quality.The optimized films for most parameters can be obtained at 200℃ for the air-annealing case and at room temperature for the vacuum annealing case.The advisable optoelectronic properties imply that HoF_3:ZnO can facilitate carrier injection and has promising applications in energy and light sources as transparent electrodes.展开更多
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree,operation frequency and power density,and the main strategy of thermal management is to remove excess energy ...Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree,operation frequency and power density,and the main strategy of thermal management is to remove excess energy from electronics to outside by thermal conductive materials.Compared to the conventional thermal management materials,flexible thermally conductive films with high in-plane thermal conductivity,as emerging candidates,have aroused greater interest in the last decade,which show great potential in thermal management applications of next-generation devices.However,a comprehensive review of flexible thermally conductive films is rarely reported.Thus,we review recent advances of both intrinsic polymer films and polymer-based composite films with ultrahigh in-plane thermal conductivity,with deep understandings of heat transfer mechanism,processing methods to enhance thermal conductivity,optimization strategies to reduce interface thermal resistance and their potential applications.Lastly,challenges and opportunities for the future development of flexible thermally conductive films are also discussed.展开更多
We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions. Normal thermal conductivity that is independent of system size is observed when the latt...We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions. Normal thermal conductivity that is independent of system size is observed when the lattice chains are long enough. Because only the harmonic interactions are involved, the result confirms, without ambiguity, that asymmetry plays a key role in normal thermal conduction in one-dimensional momentum conserving lattices. Both equilibrium and nonequilibrium simulations are performed to support the conclusion.展开更多
Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through...Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through two terminals can be largely controlled by the temperature of the third one.Dynamic response plays an important role in the application of electric devices and also thermal devices,which represents the devices’ability to treat fast varying inputs.In this paper,we systematically study two typical dynamic responses of a thermal transistor,i.e.,the response to a step-function input(a switching process)and the response to a square-wave input.The role of the length L of the control segment is carefully studied.It is revealed that when L is increased,the performance of the thermal transistor worsens badly.Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on L quite well,which agrees with our analytical expectation.However,the detailed power exponents deviate from the expected values noticeably.This implies the violation of the conventional assumptions that we adopt.展开更多
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern...Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.展开更多
Seeking intrinsically low thermal conductivity materials is a viable strategy in the pursuit of high-performance thermoelectric materials.Here,by using first-principles calculations and semiclassical Boltzmann transpo...Seeking intrinsically low thermal conductivity materials is a viable strategy in the pursuit of high-performance thermoelectric materials.Here,by using first-principles calculations and semiclassical Boltzmann transport theory,we systemically investigate the carrier transport and thermoelectric properties of monolayer Janus GaInX_(3)(X=S,Se,Te).It is found that the lattice thermal conductivities can reach values as low as 3.07 W·m^(-1)·K^(-1),1.16 W·m^(-1)·K^(-1)and 0.57 W·m^(-1)·K^(-1)for GaInS_(3),GaInSe_(3),and GaInTe_(3),respectively,at room temperature.This notably low thermal conductivity is attributed to strong acoustic-optical phonon coupling caused by the presence of low-frequency optical phonons in GaInX_(3) materials.Furthermore,by integrating the charac teristics of electronic and thermal transport,the dimensionless figure of merit ZT can reach maximum values of 0.95,2.37,and 3.00 for GaInS_(3),GaInSe_(3),and GaInTe_(3),respectively.Our results suggest that monolayer Janus GaInX_(3)(X=S,Se,Te)is a promising candidate for thermoelectric and heat management applications.展开更多
The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles inf...The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles influenced by van der Waals forces.Our approach involves the application of non-equilibrium molecular dynamics to assess thermal conductivity while varying the interaction strength,leading to a noteworthy reduction in thermal conductivity.Furthermore,we observe a distinct attenuation in length-dependent behavior within the graphene-nanoparticles system.Our exploration combines wave packet simulations with phonon transmission calculations,aligning with a comprehensive analysis of the phonon transport regime to unveil the underlying physical mechanisms at play.Lastly,we conduct transient molecular dynamics simulations to investigate interfacial thermal conductance between the nanoparticles and the graphene,revealing an enhanced thermal boundary conductance.This research not only contributes to our understanding of phonon transport but also opens a new degree of freedom for utilizing van der Waals nanoparticle-induced resonance,offering promising avenues for the modulation of thermal properties in advanced materials and enhancing their performance in various technological applications.展开更多
Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean...Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions.展开更多
GeTe has attracted extensive research interest for thermoelectric applications.In this paper,we first train a neuroevolution potential(NEP)based on a dataset constructed by ab initio molecular dynamics,with the Gaussi...GeTe has attracted extensive research interest for thermoelectric applications.In this paper,we first train a neuroevolution potential(NEP)based on a dataset constructed by ab initio molecular dynamics,with the Gaussian approximation potential(GAP)as a reference.The phonon density of states is then calculated by two machine learning potentials and compared with density functional theory results,with the GAP potential having higher accuracy.Next,the thermal conductivity of a GeTe crystal at 300 K is calculated by the equilibrium molecular dynamics method using both machine learning potentials,and both of them are in good agreement with the experimental results;however,the calculation speed when using the NEP potential is about 500 times faster than when using the GAP potential.Finally,the lattice thermal conductivity in the range of 300 K-600 K is calculated using the NEP potential.The lattice thermal conductivity decreases as the temperature increases due to the phonon anharmonic effect.This study provides a theoretical tool for the study of the thermal conductivity of GeTe.展开更多
The thermal conductivity ofε-iron at high pressure and high temperature is a key parameter to constrain the dynamics and thermal evolution of the Earth’s core.In this work,we use first-principles calculations to stu...The thermal conductivity ofε-iron at high pressure and high temperature is a key parameter to constrain the dynamics and thermal evolution of the Earth’s core.In this work,we use first-principles calculations to study the Hugoniot sound velocity and the thermal transport properties ofε-iron.The total thermal conductivity considering lattice vibration is 200 W/mK at the Earth’s inner core conditions.The suppressed anharmonic interactions can significantly enhance the lattice thermal conductivity under high pressure,and the contribution of the lattice thermal conductivity should not be ignored under the Earth’s core conditions.展开更多
Waterborne polyurethane(WPU)is attracting widespread attention in the friction field,but pure WPU cannot meet the wear resistance requirements due to poor thermal and self-lubricating properties.Herein,a novel cellulo...Waterborne polyurethane(WPU)is attracting widespread attention in the friction field,but pure WPU cannot meet the wear resistance requirements due to poor thermal and self-lubricating properties.Herein,a novel cellulose/BNNSs-AgNPs aerogel(CBAg)composed of zero-dimensional silver nanoparticles(AgNPs),onedimensional cellulose and two-dimensional boron nitride nanosheets(BNNSs)was successfully fabricated.Specifically,AgNPs were loaded onto the surface of BNNSs,which could serve as bridges to connect adjacent BNNSs.Cellulose was used to construct a 3D skeleton structure for stabilizing better dispersion of inorganic fillers.Finally,the thermal and tribological properties of CBAg-WPU were improved compared to pure WPU,with a 69%increase in thermal conductivity and an 89%reduction in wear rate.This was attributed to the load-bearing capacity of cellulose and outstanding thermal and lubricant capability of BNNSs-AgNPs.In addition,BNNSs and AgNPs inside the aerogel were transferred to the sliding interface and participated in the formation of high-quality friction transfer film,further endowing CBAg-WPU composites prominent tribological performance.Therefore,the novel design of 3D hybrid aerogels provided a promising avenue to improve the tribological performance of WPU composites.展开更多
Several theoretical models have been developed so far to predict the thermal conductivities of carbon nanotube(CNT)networks.However,these models overestimated the thermal conductivity significantly.In this paper,we cl...Several theoretical models have been developed so far to predict the thermal conductivities of carbon nanotube(CNT)networks.However,these models overestimated the thermal conductivity significantly.In this paper,we claimed that a CNT network can be considered as a contact thermal resistance network.In the contact thermal resistance network,the temperature of an individual CNT is nonuniform and the intrinsic thermal resistance of CNTs can be ignored.Compared with the previous models,the model we proposed agrees well with the experimental results of single-walled CNT networks.展开更多
The effect of nanoparticle aggregation on the thermal conductivity of nanocomposites or nanofluids is typically nonnegligible. A universal model(Maxwell model) including nanoparticle aggregation is modified in order...The effect of nanoparticle aggregation on the thermal conductivity of nanocomposites or nanofluids is typically nonnegligible. A universal model(Maxwell model) including nanoparticle aggregation is modified in order to predict the thermal conductivity of nanocomposites more accurately. The predicted thermal conductivities of silica and titania nanoparticle powders are compared first with that measured by a hot-wire method and then with those in previous experimental works.The results show that there is good agreement between our model and experiments, and that nanoparticle aggregation in a nanocomposite enhances the thermal conductivity greatly and should not be ignored. Because it considers the effect of aggregation, our model is expected to yield precise predictions of the thermal conductivity of composites.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12204130)the Fundamental Research Funds for the Central University of China(Grant No.2019ZDPY16)+2 种基金the Basic Research Project of Xuzhou City(Grant No.KC22043)the support funded by the Graduate Innovation Program of China University of Mining and Technology(Grant Nos.2024WLJCRCZL266 and 2024WLJCRCZL294)the Postgraduate Research Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_2692)。
文摘In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC60).We examined the effects of size,interface interaction coefficients,and thermal equilibrium time on the ITC of the GE/qHPC60 heterostructure.
基金the National Key R&D Program of China(No.2023YFC3009501)the National Natural Science Foundation of China(No.52374298)+1 种基金the project of State Key Laboratory of Explosion Science and Safety Protection(Beijing Institute of Technology,No.QNKT23-17)Aeronautical Science Foundation of China(No.20174072003).
文摘Garnet Li_(7)La_(3)Zr_(2)O_(12)(LLZO)electrolytes have been recognized as a promising candidate to replace liquid/molten-state electrolytes in battery applications due to their exceptional performance,particularly Ga-doped LLZO(LLZGO),which exhibits high ionic conductivity.However,the limited size of the Liþtransport bottleneck restricts its high-current discharging performance.The present study focuses on the synthesis of Ga^(3+)þand Ba^(2+)þco-doped LLZO(LLZGBO)and investigates the influence of doping contents on the morphology,crystal structure,Liþtransport bottleneck size,and ionic conductivity.In particular,Ga_(0.32)Ba_(0.15)exhibits the highest ionic conductivity(6.11E-2 S cm^(-1) at 550 C)in comparison with other compositions,which can be attributed to its higher-energy morphology,larger bottleneck and unique Liþtransport channel.In addition to Ba^(2+),Sr^(2+)þand Ca^(2+)have been co-doped with Ga3þinto LLZO,respectively,to study the effect of doping ion radius on crystal structures and the properties of electrolytes.The characterization results demonstrate that the easier Liþtransport and higher ionic conductivity can be obtained when the electrolyte is doped with larger-radius ions.As a result,the assembled thermal battery with Ga_(0.32)Ba_(0.15)-LLZO electrolyte exhibits a remarkable voltage platform of 1.81 V and a high specific capacity of 455.65 mA h g^(-1) at an elevated temperature of 525℃.The discharge specific capacity of the thermal cell at 500 mA amounts to 63%of that at 100 mA,showcasing exceptional high-current discharging performance.When assembled as prototypes with fourteen single cells connected in series,the thermal batteries deliver an activation time of 38 ms and a discharge time of 32 s with the current density of 100 mA cm^(-2).These findings suggest that Ga,Ba co-doped LLZO solid-state electrolytes with high ionic conductivities holds great potential for high-capacity,quick-initiating and high-current discharging thermal batteries.
基金supported by the Collaborative Innovation Program of Hefei Science Center of CAS(No.2022HSC-CIP007)。
文摘The thermal conductivity of plasma-facing materials(PFM)exposed to intense radiation is a critical concern for the reliable usage of materials in fusion reactors.However,limited research has been performed regarding the thermal conductivity of structures that rapidly change in a short time during collision cascade processes under irradiation.In this study,we employed the tight-binding(TB)method to investigate the electronic thermal conductivity(κ_(e))of tungsten-based systems during various cascading processes.We found thatκ_(e) values sharply decrease within the initial 0.3 picoseconds and then partially recover at a slow pace;this is closely linked to the evolution of defects and microstructural distortions.The increase in the initial kinetic energy of the primary knock-on atom and the presence of a high concentration of hydrogen atoms further decrease theκ_(e) values.Conversely,higher temperatures have a significant positive effect onκ_(e).Furthermore,the presence of a grain boundary∑5[001](130)substantially reducesκ_(e),whereas the absorption effect of point defects by the grain boundary has little influence onκ_(e) during cascades.Our findings provide a theoretical basis for evaluating changes in the thermal conductivity performance of PFMs during their usage in nuclear fusion reactors.
基金supported by the National Natural Science Foundation of China(Grant No.12074115)the Science and Technology Innovation Program of Hunan Province(Grant No.2023RC3176)。
文摘LiFePO_(4) is a cathode material with good thermal stability,but low thermal conductivity is a critical problem.In this study,we employ a machine learning potential approach based on first-principles methods combined with the Boltzmann transport theory to investigate the influence of Na substitution on the thermal conductivity of LiFePO_(4) and the impact of Li-ion de-embedding on the thermal conductivity of Li_(3/4)Na_(1/4)FePO_(4),with the aim of enhancing heat dissipation in Li-ion batteries.The results show a significant increase in thermal conductivity due to an increase in phonon group velocity and a decrease in phonon anharmonic scattering by Na substitution.In addition,the thermal conductivity increases significantly with decreasing Li-ion concentration due to the increase in phonon lifetime.Our work guides the improvement of the thermal conductivity of Li FePO_4,emphasizing the crucial roles of both substitution and Li-ion detachment/intercalation for the thermal management of electrochemical energy storage devices.
基金Project supported by the National Key R&D Project from Ministry of Science and Technology of China(Grant No.2022YFA1203100)the National Natural Science Foundation of China(Grant No.52122606)the funding from Shanghai Polytechnic University.
文摘As the size of transistors shrinks and power density increases,thermal simulation has become an indispensable part of the device design procedure.However,existing works for advanced technology transistors use simplified empirical models to calculate effective thermal conductivity in the simulations.In this work,we present a dataset of size-dependent effective thermal conductivity with electron and phonon properties extracted from ab initio computations.Absolute in-plane and cross-plane thermal conductivity data of eight semiconducting materials(Si,Ge,GaN,AlN,4H-SiC,GaAs,InAs,BAs)and four metallic materials(Al,W,TiN,Ti)with the characteristic length ranging from 5 nm to 50 nm have been provided.Besides the absolute value,normalized effective thermal conductivity is also given,in case it needs to be used with updated bulk thermal conductivity in the future.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51764046 and 52160013)the Inner Mongolia Autonomous Region Postgraduate Research Innovation Project of China (Grant No. S20231165Z)the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region of China (Grant Nos. 2023RCTD016 and 2024RCTD008)。
文摘Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61774154 and 51503196
文摘A kind of n-type HoF_3-doped zinc oxide-based transparent conductive film has been developed by electron beam evaporation and studied under thermal annealing in air and vacuum at temperatures 100–500℃.Effective substitutional dopings of F to O and Ho to Zn are realized for the films with smooth surface morphology and average grain size of about 50 nm.The hall mobility,electron concentration,resistivity and work function for the asdeposited films are 47.89 cm^2/Vs,1.39×10^(20)cm^(-3),9.37×10^(-4)Ω·cm and 5.069 eV,respectively.In addition,the average transmittance in the visible region(400–700 nm)approximates to 87%.The HoF_3:ZnO films annealed in air and vacuum can retain good optoelectronic properties under 300℃,thereinto,more stable electrical properties can be found in the air-annealed films than in the vacuum-annealed films,which is assumed to be a result of improved nano-crystalline lattice quality.The optimized films for most parameters can be obtained at 200℃ for the air-annealing case and at room temperature for the vacuum annealing case.The advisable optoelectronic properties imply that HoF_3:ZnO can facilitate carrier injection and has promising applications in energy and light sources as transparent electrodes.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
基金funded by the National Natural Science Foundation of China (NNSFC grant nos. 52103034, 51873126, 52175331 and 52003170)Shandong Provincial Natural Science Foundation (ZR2021QE014, ZR2020ZD04)
文摘Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree,operation frequency and power density,and the main strategy of thermal management is to remove excess energy from electronics to outside by thermal conductive materials.Compared to the conventional thermal management materials,flexible thermally conductive films with high in-plane thermal conductivity,as emerging candidates,have aroused greater interest in the last decade,which show great potential in thermal management applications of next-generation devices.However,a comprehensive review of flexible thermally conductive films is rarely reported.Thus,we review recent advances of both intrinsic polymer films and polymer-based composite films with ultrahigh in-plane thermal conductivity,with deep understandings of heat transfer mechanism,processing methods to enhance thermal conductivity,optimization strategies to reduce interface thermal resistance and their potential applications.Lastly,challenges and opportunities for the future development of flexible thermally conductive films are also discussed.
基金the National Natural Science Foundation of China(Grants Nos.10925525 and 10805036)
文摘We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions. Normal thermal conductivity that is independent of system size is observed when the lattice chains are long enough. Because only the harmonic interactions are involved, the result confirms, without ambiguity, that asymmetry plays a key role in normal thermal conduction in one-dimensional momentum conserving lattices. Both equilibrium and nonequilibrium simulations are performed to support the conclusion.
基金Project supported by the National Natural Science Foundation of China(Grant No.12075316)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.21XNH091)(Q.R.)。
文摘Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through two terminals can be largely controlled by the temperature of the third one.Dynamic response plays an important role in the application of electric devices and also thermal devices,which represents the devices’ability to treat fast varying inputs.In this paper,we systematically study two typical dynamic responses of a thermal transistor,i.e.,the response to a step-function input(a switching process)and the response to a square-wave input.The role of the length L of the control segment is carefully studied.It is revealed that when L is increased,the performance of the thermal transistor worsens badly.Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on L quite well,which agrees with our analytical expectation.However,the detailed power exponents deviate from the expected values noticeably.This implies the violation of the conventional assumptions that we adopt.
基金the National Natural Science Foundation of China(Nos.52272046,52090030,52090031,52122301,51973191)the Natural Science Foundation of Zhejiang Province(LR23E020003)+4 种基金Shanxi-Zheda Institute of New Materials and Chemical Engineering(2021SZ-FR004,2022SZ-TD011,2022SZ-TD012,2022SZ-TD014)Hundred Talents Program of Zhejiang University(188020*194231701/113,112300+1944223R3/003,112300+1944223R3/004)the Fundamental Research Funds for the Central Universities(Nos.226-2023-00023,226-2023-00082,2021FZZX001-17,K20200060)National Key R&D Program of China(NO.2022YFA1205300,NO.2022YFA1205301,NO.2020YFF0204400,NO.2022YFF0609801)“Pioneer”and“Leading Goose”R&D Program of Zhejiang 2023C01190.
文摘Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12104145,62201208,and 12374040)。
文摘Seeking intrinsically low thermal conductivity materials is a viable strategy in the pursuit of high-performance thermoelectric materials.Here,by using first-principles calculations and semiclassical Boltzmann transport theory,we systemically investigate the carrier transport and thermoelectric properties of monolayer Janus GaInX_(3)(X=S,Se,Te).It is found that the lattice thermal conductivities can reach values as low as 3.07 W·m^(-1)·K^(-1),1.16 W·m^(-1)·K^(-1)and 0.57 W·m^(-1)·K^(-1)for GaInS_(3),GaInSe_(3),and GaInTe_(3),respectively,at room temperature.This notably low thermal conductivity is attributed to strong acoustic-optical phonon coupling caused by the presence of low-frequency optical phonons in GaInX_(3) materials.Furthermore,by integrating the charac teristics of electronic and thermal transport,the dimensionless figure of merit ZT can reach maximum values of 0.95,2.37,and 3.00 for GaInS_(3),GaInSe_(3),and GaInTe_(3),respectively.Our results suggest that monolayer Janus GaInX_(3)(X=S,Se,Te)is a promising candidate for thermoelectric and heat management applications.
基金funded in parts by the National Natural Science Foundation of China (Grant No.12105242)Yunnan Fundamental Research Project (Grant Nos.202201AT070161 and 202301AW070006)support from the Graduate Scientific Research and Innovation Fund of Yunnan University (Grant No.KC-22221060)。
文摘The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles influenced by van der Waals forces.Our approach involves the application of non-equilibrium molecular dynamics to assess thermal conductivity while varying the interaction strength,leading to a noteworthy reduction in thermal conductivity.Furthermore,we observe a distinct attenuation in length-dependent behavior within the graphene-nanoparticles system.Our exploration combines wave packet simulations with phonon transmission calculations,aligning with a comprehensive analysis of the phonon transport regime to unveil the underlying physical mechanisms at play.Lastly,we conduct transient molecular dynamics simulations to investigate interfacial thermal conductance between the nanoparticles and the graphene,revealing an enhanced thermal boundary conductance.This research not only contributes to our understanding of phonon transport but also opens a new degree of freedom for utilizing van der Waals nanoparticle-induced resonance,offering promising avenues for the modulation of thermal properties in advanced materials and enhancing their performance in various technological applications.
基金Project supported by the Fundamental Research Fund for the Central Universities of Chinathe Research Project for Independently Cultivate Talents of Hebei Agricultural University (Grant No.ZY2023007)。
文摘Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions.
基金Project supported by the A*STAR Computational Resource Centre through the use of its high-performance computing facilitiesfinancial support from the China Scholarship Council (Grant No.202206120136)。
文摘GeTe has attracted extensive research interest for thermoelectric applications.In this paper,we first train a neuroevolution potential(NEP)based on a dataset constructed by ab initio molecular dynamics,with the Gaussian approximation potential(GAP)as a reference.The phonon density of states is then calculated by two machine learning potentials and compared with density functional theory results,with the GAP potential having higher accuracy.Next,the thermal conductivity of a GeTe crystal at 300 K is calculated by the equilibrium molecular dynamics method using both machine learning potentials,and both of them are in good agreement with the experimental results;however,the calculation speed when using the NEP potential is about 500 times faster than when using the GAP potential.Finally,the lattice thermal conductivity in the range of 300 K-600 K is calculated using the NEP potential.The lattice thermal conductivity decreases as the temperature increases due to the phonon anharmonic effect.This study provides a theoretical tool for the study of the thermal conductivity of GeTe.
基金supported by the National Natural Science Foundation of China(Grant No.12072044)the Natural Science Foundation of Chongqing City(Grant No.cstc2020jcyjmsxmX0616).
文摘The thermal conductivity ofε-iron at high pressure and high temperature is a key parameter to constrain the dynamics and thermal evolution of the Earth’s core.In this work,we use first-principles calculations to study the Hugoniot sound velocity and the thermal transport properties ofε-iron.The total thermal conductivity considering lattice vibration is 200 W/mK at the Earth’s inner core conditions.The suppressed anharmonic interactions can significantly enhance the lattice thermal conductivity under high pressure,and the contribution of the lattice thermal conductivity should not be ignored under the Earth’s core conditions.
基金supported by the Open Project of Basic Research of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai(Grant No.AMGM2023F08)Open Fund Project of National United Engineering Laboratory for Advanced Bearing Tribology(No.202301).
文摘Waterborne polyurethane(WPU)is attracting widespread attention in the friction field,but pure WPU cannot meet the wear resistance requirements due to poor thermal and self-lubricating properties.Herein,a novel cellulose/BNNSs-AgNPs aerogel(CBAg)composed of zero-dimensional silver nanoparticles(AgNPs),onedimensional cellulose and two-dimensional boron nitride nanosheets(BNNSs)was successfully fabricated.Specifically,AgNPs were loaded onto the surface of BNNSs,which could serve as bridges to connect adjacent BNNSs.Cellulose was used to construct a 3D skeleton structure for stabilizing better dispersion of inorganic fillers.Finally,the thermal and tribological properties of CBAg-WPU were improved compared to pure WPU,with a 69%increase in thermal conductivity and an 89%reduction in wear rate.This was attributed to the load-bearing capacity of cellulose and outstanding thermal and lubricant capability of BNNSs-AgNPs.In addition,BNNSs and AgNPs inside the aerogel were transferred to the sliding interface and participated in the formation of high-quality friction transfer film,further endowing CBAg-WPU composites prominent tribological performance.Therefore,the novel design of 3D hybrid aerogels provided a promising avenue to improve the tribological performance of WPU composites.
基金Project support by the National Natural Science Foundation of China(Grant No.52127811)Department of Science and Technology of Jiangsu Province,China(Grant No.BK20220032)。
文摘Several theoretical models have been developed so far to predict the thermal conductivities of carbon nanotube(CNT)networks.However,these models overestimated the thermal conductivity significantly.In this paper,we claimed that a CNT network can be considered as a contact thermal resistance network.In the contact thermal resistance network,the temperature of an individual CNT is nonuniform and the intrinsic thermal resistance of CNTs can be ignored.Compared with the previous models,the model we proposed agrees well with the experimental results of single-walled CNT networks.
基金Project supported by the Fundamental Research Funds for the Central Universities of China(Grant No.2015XKMS062)
文摘The effect of nanoparticle aggregation on the thermal conductivity of nanocomposites or nanofluids is typically nonnegligible. A universal model(Maxwell model) including nanoparticle aggregation is modified in order to predict the thermal conductivity of nanocomposites more accurately. The predicted thermal conductivities of silica and titania nanoparticle powders are compared first with that measured by a hot-wire method and then with those in previous experimental works.The results show that there is good agreement between our model and experiments, and that nanoparticle aggregation in a nanocomposite enhances the thermal conductivity greatly and should not be ignored. Because it considers the effect of aggregation, our model is expected to yield precise predictions of the thermal conductivity of composites.