Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular st...Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.展开更多
Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian Univers...Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China.展开更多
Steel tube slab (STS) structure, a novel pipe-roof structure, of which steel tubes are connected with flange plates, bolts and concrete, is an increasingly popular supporting structure for underground space developmen...Steel tube slab (STS) structure, a novel pipe-roof structure, of which steel tubes are connected with flange plates, bolts and concrete, is an increasingly popular supporting structure for underground space development. Whilst the load-bearing of pipe-roof structures has been the subject of much research, uncertainties of deformation mechanism and the derivation of reliable calculation methods remain a challenge. For efficient design and wider deployment, this paper presents a bidirectional bending test to investigate the bending stiffnesses, load capacities and deformation mechanisms. The results show that the STS specimens exhibit good ductility and experience bending failure, and their deformation curves follow a half-sine wave upon loading. On this basis, the development of an STS composite slab deformation prediction model is proposed, along with the estimation for its bending stiffness. Theoretical predictions are shown to be in good agreement with the experimental measurements, with a maximum error of less than 15%. The outcomes of this investigation can provide references for the design and application of STS structures.展开更多
Based on current theories of diffusion and creep cavity closure at high temperature, a theoretical analysis of phase transformation diffusion bonding for T8/T8 eutectoid steel is carried out. The diffusion bonding is ...Based on current theories of diffusion and creep cavity closure at high temperature, a theoretical analysis of phase transformation diffusion bonding for T8/T8 eutectoid steel is carried out. The diffusion bonding is mainly described as two-stage process: Ⅰ The interfacial cavity with shape change from diamond to cylinder.Ⅱ The radius of the cylindrical cavity are reduced and eliminated gradually. A new theoretical model is established for the process of transformation superplastic diffusion bonding (TSDB) on the basis of a theoretical model for isothermal superplastic diffusion. The model can predict the bonding quality which is affected by technological parameters, such as limit cycling temperature, the compressive stress, the numbers of thermal cycles and temperature cycling through the phase transformation in the thermal cycling and so on. Results show that the maximum temperature, the compressive stress, the numbers of thermal cycles and the rate of temperature changing speed in the thermal cycling have an important influence on TSDB process. Meanwhile, reasonable technological parameters chosen from theoretical analysis is in good agreement with those obtained from experimental results.展开更多
Hydraulic transient, which is resulted from sudden increase of inlet pressure for laminar pipeline flow, is studied. The partial differential equation, initial and boundary conditions for transient pressure were const...Hydraulic transient, which is resulted from sudden increase of inlet pressure for laminar pipeline flow, is studied. The partial differential equation, initial and boundary conditions for transient pressure were constructed, and the theoretical solution was obtained by variable-separation method. The partial differential equation, initial and boundary conditions for flow rate were obtained in accordance with the constraint correlation between flow rate and pressure while the transient flow rate distribution was also solved by variable-separation method. The theoretical solution conforms to numerical solution obtained by method of characteristics (MOC) very well.展开更多
The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of ma...The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of macromixing time and micromixing time are quantitatively discussed. The results show that under a continuous and stable operating condition, as the paddle speed increases, the macromixing time and micromixing time calculated by the two models both decrease, even in a linkage equilibrium state. Simultaneously, as the paddle speed increases, the results figured by the two models tend to be consistent. It indicates that two models both are more suitable for calculation of mixing time in high paddle speed. Compared with the existing experimental results of this type of reactor, the mixing time computed in the speed of 1500 r/min is closer to it. These conclusions can provide an important reference for systematically studying the strengthening mechanism of LISR under continuous mixing conditions.展开更多
The use of a shaped liner driven by electromagnetic force is a new means of forming jets. To study the mechanism of jet formation driven by electromagnetic force, we considered the current skin effect and the characte...The use of a shaped liner driven by electromagnetic force is a new means of forming jets. To study the mechanism of jet formation driven by electromagnetic force, we considered the current skin effect and the characteristics of electromagnetic loading and established a coupling model of "ElectriceMagnetic eForce" and the theoretical model of jet formation under electromagnetic force. The jet formation and penetration of conical and trumpet liners have been calculated. Then, a numerical simulation of liner collapse under electromagnetic force, jet generation, and the stretching motion were performed using an ANSYS multiphysics processor. The calculated jet velocity, jet shape, and depth of penetration were consistent with the experimental results, with a relative error of less than 10%. In addition, we calculated the jet formation of different curvature trumpet liners driven by the same loading condition and obtained the influence rule of the curvature of the liner on jet formation. Results show that the theoretical model and the ANSYS multiphysics numerical method can effectively calculate the jet formation of liners driven by electromagnetic force, and in a certain range, the greater the curvature of the liner is, the greater the jet velocity is.展开更多
To avoid the machine problems of excessive axial force, complex process flow and frequent tool changing during robotic drilling holes, a new hole-making technology (i.e., helical milling hole) was introduced for desig...To avoid the machine problems of excessive axial force, complex process flow and frequent tool changing during robotic drilling holes, a new hole-making technology (i.e., helical milling hole) was introduced for designing a new robotic helical milling hole system, which could further improve robotic hole-making ability in airplane digital assembly. After analysis on the characteristics of helical milling hole, advantages and limitations of two typical robotic helical milling hole systems were summarized. Then, vector model of helical milling hole movement was built on vector analysis method. Finally, surface roughness calculation formula was deduced according to the movement principle of helical milling hole, then the influence of main technological parameters on surface roughness was analyzed. Analysis shows that theoretical surface roughness of hole becomes poor with the increase of tool speed ratio and revolution radius. Meanwhile, the roughness decreases according to the increase of tool teeth number. The research contributes greatly to the construction of roughness prediction model in helical milling hole.展开更多
To make heat conduction equation embody the essence of physical phenomenon under study, dimensionless factors were introduced and the transient heat conduction equation and its boundary conditions were transformed to ...To make heat conduction equation embody the essence of physical phenomenon under study, dimensionless factors were introduced and the transient heat conduction equation and its boundary conditions were transformed to dimensionless forms. Then, a theoretical solution model of transient heat conduction problem in one-dimensional double-layer composite medium was built utilizing the natural eigenfunction expansion method. In order to verify the validity of the model, the results of the above theoretical solution were compared with those of finite element method. The results by the two methods are in a good agreement. The maximum errors by the two methods appear when τ(τ is nondimensional time) equals 0.1 near the boundaries of ζ =1 (ζ is nondimensional space coordinate) and ζ =4. As τ increases, the error decreases gradually, and when τ =5 the results of both solutions have almost no change with the variation of coordinate 4.展开更多
Fracture toughness is very important when applying Damage Tolerance Design and Assessment Techniques. The traditional testing approach for obtaining fracture toughness values is costly and time consuming. In order to ...Fracture toughness is very important when applying Damage Tolerance Design and Assessment Techniques. The traditional testing approach for obtaining fracture toughness values is costly and time consuming. In order to estimate the fracture toughness of ductile metals, the fracture mechanics theory, materials plastic deformation theory and materials constructive relationships are employed here. A series of formulae and a theoretical approach are presented to calculate fracture toughness values of different materials in the plane stress and plane strain conditions. Compared with test results, evaluated values have a good agreement.展开更多
The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparis...The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.展开更多
The kind of micro-/nano-meter precision actuator in cludes a piezoelectric one, an electric deformation one, a magnetic deformation one, a mechanical one, and a mechanical and electrical one. This paper puts forw ard ...The kind of micro-/nano-meter precision actuator in cludes a piezoelectric one, an electric deformation one, a magnetic deformation one, a mechanical one, and a mechanical and electrical one. This paper puts forw ard a mechanical and electrical step actuator of nanometer precision, which cons ists of a step motor of large fine-dividing number of step angle, shaft couplin gs, a decelerator of large decelerating ratio, a screw mechanism and a pole of U shape, and has the minimum step displacement of 10 nm, the step displac ement precision of 1 nm, the step frequency of 4 kHz, the maximum loadability of 20 kg. In order to achieve the nano displacement of nano precision by this actu ator, the theoretical analysis of stress and strain must be made on the transmit ting course of nano displacement of the actuator, and their numerical simulation is done by computer. The paper establishes the constitutive equation of 3-D stress and the strain co ordinate equation of the composing system of the nanometer precision actuator. A s a result, the theoretical relation among stress and strain and displacement is set up. The torque of the step motor produces a thrust to transmit the displace ment of the above system of the parts and assemblies to output the needed nano d isplacement. In the case of concrete analysis and calculating, the comparing met hod of film-roof is applied to analyze and calculate the motor axis, decelerato r axes, the screw pole and the nut. The analysis method of plane stress and stra in is used to analyze and calculate the shaft couplings and gears. The analysis method of beam stress and strain is used to do the pole of U shape. These calcul ation is belong to the physical non-linear problem. Under the condition of smal l deformation, the analysis way of the finite element can be combined with the a bove analyses and calculations. The elementary analysis results show that the na nometer precision actuator can be applied in STM nanofabrication.展开更多
As a systematic project, Chinese rural comprehensive reform (hereinafter referred to as "the reform") involved multiple dimensions such as rural governance, economy, culture, society and ecology, which laid a soli...As a systematic project, Chinese rural comprehensive reform (hereinafter referred to as "the reform") involved multiple dimensions such as rural governance, economy, culture, society and ecology, which laid a solid foundation for the overall reform in China. Western rural development theory had been proved to be insufficient to support Chinese rural reform. Therefore, theoretical innovation became urgent in the fields of rural governance, government functions, public finance and rural-urban integration etc. In recent years, Chinese rural comprehensive reform had been adjusting itself to the requirements of the "new normal". And during the process of agricultural modernization, the bottlenecks included the contradictory relationships between reform, development and overall stability, agricultural simplification and industrial diversification, economic development and environmental protection, rapid development of urban areas and slow progress of rural areas, grassroots governance and democratic supervision etc. Proper countermeasures would help to settle the above contradictions.展开更多
In this review, the theorelical study on D-physics is summarized including D-(?) mixing, D meson decays, diquark contributions to D-physics, 1/Nc expansion, final state interactions and some discussions about BEPC and...In this review, the theorelical study on D-physics is summarized including D-(?) mixing, D meson decays, diquark contributions to D-physics, 1/Nc expansion, final state interactions and some discussions about BEPC and BES.展开更多
A prevalent kind of failure of rock slopes is toppling instability.In secondary toppling failures,these instabilities are stimulated through some external factors.A type of secondary toppling failure is"slide-toe...A prevalent kind of failure of rock slopes is toppling instability.In secondary toppling failures,these instabilities are stimulated through some external factors.A type of secondary toppling failure is"slide-toe-toppling failure".In this instability,the upper and toe parts of the slope have the potential of sliding and toppling failures,respectively.This failure has been investigated by an analytical method and experimental tests.In the present study,at first,the literature review of toppling failure is presented.Then a simple theoretical solution is suggested for evaluating this failure.The recommended method is compared with the approach of AMINI et al through a typical example and three physical models.The results indicate that the proposed method is in good agreement with the results of AMINI et al’s approach and experimental models.Therefore,this suggested methodology can be applied to examining the stability of slide-toe-toppling failure.展开更多
Contemporary Chinese political research usually adopts three basic methods of field investigation,theoretical creation and practical participation,which respectively correspond to the life logic,theoretical logic and ...Contemporary Chinese political research usually adopts three basic methods of field investigation,theoretical creation and practical participation,which respectively correspond to the life logic,theoretical logic and practical logic in political functioning.Field investigation has become an important approach to"understanding Chinese politics"and promoting the localization of contemporary Chinese political research.Meanwhile,the new perspective of theoretical field besides empirical field marks the self-awareness and transition of the methodology in Chinese political research.To study Chinese experience itself,we should not only consciously focus upon China,but also continuously promote experience based on field research,as well as perfect and improve the research through the interaction between experience,theory and practice.The popular paradigms at home and abroad,including"authoritarianism"and"a developmental country",fail to explain Chinese experience and Chinese political development,so we still need a theoretical paradigm more appropriate to Chinese experience and practice.展开更多
The application of mass spectrometry to investigations o{ gas-phase photochemistry and kinetics by flash photolysis was first reported in 1957. Mass spectrometry is advantageous and versatile for kinetics and mechani...The application of mass spectrometry to investigations o{ gas-phase photochemistry and kinetics by flash photolysis was first reported in 1957. Mass spectrometry is advantageous and versatile for kinetics and mechanism studies since it is capable of detecting many different chemical species during the course of the reaction and one can determine kinetic rates of reactant decay and product growth. When the mass spectrometer is used to determine kinetic decays and growths following pulsed photolysis, it may be called flash photolysis with time-resolved mass spectrometry(FPTRMS). While experiments using FPTRMS can obtain direct and valuable information on kinetics and mechanism o[ chemical reactions, they are limited in some cases. For example, experiments can be conducted only at limited temperature and pressure ranges. Moreover,the experimental investigation alone does not always provide sufficient information for the reaction mecha-nism study, especially for a complex reaction system. The theoretical investigations including Ab Initio cal-culations, RRKM calculations and numerial simulations are useful and supplemental tools to the experimen-tal studies. Ab initio and RRKM calculations can be used to predict rate coefficients of chemical reactions ina much wider ranges of temperature and pressure. Important information on the mechanism can also be obtained from the theoretical studies. However, the validation and accuracy of the results from the theoreticalinvestigations need to be verified or adjusted by experimental results. As an example, a study of kinetics and mechanism of CF3CHC10 radical reactions using FPTRMS combining with the theoretical calculations is reported.展开更多
The function of Gastrointestinal tract including intestine is to a large degree mechanical.The mechanical properties of the intestinal wall,and the tonic (sustained) and/or phasic(short-
American anthropologist Gary.B.Palmer put forward a comprehensive theory—cultural linguistics in 1996.Centered in image and framed in cultural dimension,Palmer originates a new research method for linguistics by inte...American anthropologist Gary.B.Palmer put forward a comprehensive theory—cultural linguistics in 1996.Centered in image and framed in cultural dimension,Palmer originates a new research method for linguistics by integrating three major branches of linguistic anthropology and cognitive linguistics,hopefully to provide a new perspective to study language and culture,enhance understanding between nations,and promote the process of the harmonious world.展开更多
文摘Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.
文摘Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China.
基金Project(BK20210721) supported by the Natural Science Foundation of Jiangsu Province,ChinaProjects(52108380,52078506) supported by the National Natural Science Foundation of ChinaProject(2023A1515012159) supported by the Guangdong Basic and Applied Basic Research Foundation,China。
文摘Steel tube slab (STS) structure, a novel pipe-roof structure, of which steel tubes are connected with flange plates, bolts and concrete, is an increasingly popular supporting structure for underground space development. Whilst the load-bearing of pipe-roof structures has been the subject of much research, uncertainties of deformation mechanism and the derivation of reliable calculation methods remain a challenge. For efficient design and wider deployment, this paper presents a bidirectional bending test to investigate the bending stiffnesses, load capacities and deformation mechanisms. The results show that the STS specimens exhibit good ductility and experience bending failure, and their deformation curves follow a half-sine wave upon loading. On this basis, the development of an STS composite slab deformation prediction model is proposed, along with the estimation for its bending stiffness. Theoretical predictions are shown to be in good agreement with the experimental measurements, with a maximum error of less than 15%. The outcomes of this investigation can provide references for the design and application of STS structures.
文摘Based on current theories of diffusion and creep cavity closure at high temperature, a theoretical analysis of phase transformation diffusion bonding for T8/T8 eutectoid steel is carried out. The diffusion bonding is mainly described as two-stage process: Ⅰ The interfacial cavity with shape change from diamond to cylinder.Ⅱ The radius of the cylindrical cavity are reduced and eliminated gradually. A new theoretical model is established for the process of transformation superplastic diffusion bonding (TSDB) on the basis of a theoretical model for isothermal superplastic diffusion. The model can predict the bonding quality which is affected by technological parameters, such as limit cycling temperature, the compressive stress, the numbers of thermal cycles and temperature cycling through the phase transformation in the thermal cycling and so on. Results show that the maximum temperature, the compressive stress, the numbers of thermal cycles and the rate of temperature changing speed in the thermal cycling have an important influence on TSDB process. Meanwhile, reasonable technological parameters chosen from theoretical analysis is in good agreement with those obtained from experimental results.
文摘Hydraulic transient, which is resulted from sudden increase of inlet pressure for laminar pipeline flow, is studied. The partial differential equation, initial and boundary conditions for transient pressure were constructed, and the theoretical solution was obtained by variable-separation method. The partial differential equation, initial and boundary conditions for flow rate were obtained in accordance with the constraint correlation between flow rate and pressure while the transient flow rate distribution was also solved by variable-separation method. The theoretical solution conforms to numerical solution obtained by method of characteristics (MOC) very well.
基金Project(51276131)supported by the National Natural Science Foundation of ChinaProject(ZRZ0316)supported by the Natural Science Foundation of Hubei Province,ChinaProject(2013070104010025)supported by the Morning Glory Project of Wuhan Science and Technology Bureau,China
文摘The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of macromixing time and micromixing time are quantitatively discussed. The results show that under a continuous and stable operating condition, as the paddle speed increases, the macromixing time and micromixing time calculated by the two models both decrease, even in a linkage equilibrium state. Simultaneously, as the paddle speed increases, the results figured by the two models tend to be consistent. It indicates that two models both are more suitable for calculation of mixing time in high paddle speed. Compared with the existing experimental results of this type of reactor, the mixing time computed in the speed of 1500 r/min is closer to it. These conclusions can provide an important reference for systematically studying the strengthening mechanism of LISR under continuous mixing conditions.
基金supported by the Natural Science Funds for Distinguished Young Scholar (Grant No. 11602110)Jiangsu Province Graduate Research and Practice Innovation Program (No.KY CX180471)。
文摘The use of a shaped liner driven by electromagnetic force is a new means of forming jets. To study the mechanism of jet formation driven by electromagnetic force, we considered the current skin effect and the characteristics of electromagnetic loading and established a coupling model of "ElectriceMagnetic eForce" and the theoretical model of jet formation under electromagnetic force. The jet formation and penetration of conical and trumpet liners have been calculated. Then, a numerical simulation of liner collapse under electromagnetic force, jet generation, and the stretching motion were performed using an ANSYS multiphysics processor. The calculated jet velocity, jet shape, and depth of penetration were consistent with the experimental results, with a relative error of less than 10%. In addition, we calculated the jet formation of different curvature trumpet liners driven by the same loading condition and obtained the influence rule of the curvature of the liner on jet formation. Results show that the theoretical model and the ANSYS multiphysics numerical method can effectively calculate the jet formation of liners driven by electromagnetic force, and in a certain range, the greater the curvature of the liner is, the greater the jet velocity is.
基金Foundation item: Projects(50975141, 51005118) supported by the National Natural Science Foundation of China Projects(20091652018, 2010352005) supported by Aviation Science Fund of China Project(YKJ11-001) supported by Key Program of Nanjing College of Information Technology Institute, China
文摘To avoid the machine problems of excessive axial force, complex process flow and frequent tool changing during robotic drilling holes, a new hole-making technology (i.e., helical milling hole) was introduced for designing a new robotic helical milling hole system, which could further improve robotic hole-making ability in airplane digital assembly. After analysis on the characteristics of helical milling hole, advantages and limitations of two typical robotic helical milling hole systems were summarized. Then, vector model of helical milling hole movement was built on vector analysis method. Finally, surface roughness calculation formula was deduced according to the movement principle of helical milling hole, then the influence of main technological parameters on surface roughness was analyzed. Analysis shows that theoretical surface roughness of hole becomes poor with the increase of tool speed ratio and revolution radius. Meanwhile, the roughness decreases according to the increase of tool teeth number. The research contributes greatly to the construction of roughness prediction model in helical milling hole.
基金Projects(50576007,50876016) supported by the National Natural Science Foundation of ChinaProjects(20062180) supported by the National Natural Science Foundation of Liaoning Province,China
文摘To make heat conduction equation embody the essence of physical phenomenon under study, dimensionless factors were introduced and the transient heat conduction equation and its boundary conditions were transformed to dimensionless forms. Then, a theoretical solution model of transient heat conduction problem in one-dimensional double-layer composite medium was built utilizing the natural eigenfunction expansion method. In order to verify the validity of the model, the results of the above theoretical solution were compared with those of finite element method. The results by the two methods are in a good agreement. The maximum errors by the two methods appear when τ(τ is nondimensional time) equals 0.1 near the boundaries of ζ =1 (ζ is nondimensional space coordinate) and ζ =4. As τ increases, the error decreases gradually, and when τ =5 the results of both solutions have almost no change with the variation of coordinate 4.
文摘Fracture toughness is very important when applying Damage Tolerance Design and Assessment Techniques. The traditional testing approach for obtaining fracture toughness values is costly and time consuming. In order to estimate the fracture toughness of ductile metals, the fracture mechanics theory, materials plastic deformation theory and materials constructive relationships are employed here. A series of formulae and a theoretical approach are presented to calculate fracture toughness values of different materials in the plane stress and plane strain conditions. Compared with test results, evaluated values have a good agreement.
文摘The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.
文摘The kind of micro-/nano-meter precision actuator in cludes a piezoelectric one, an electric deformation one, a magnetic deformation one, a mechanical one, and a mechanical and electrical one. This paper puts forw ard a mechanical and electrical step actuator of nanometer precision, which cons ists of a step motor of large fine-dividing number of step angle, shaft couplin gs, a decelerator of large decelerating ratio, a screw mechanism and a pole of U shape, and has the minimum step displacement of 10 nm, the step displac ement precision of 1 nm, the step frequency of 4 kHz, the maximum loadability of 20 kg. In order to achieve the nano displacement of nano precision by this actu ator, the theoretical analysis of stress and strain must be made on the transmit ting course of nano displacement of the actuator, and their numerical simulation is done by computer. The paper establishes the constitutive equation of 3-D stress and the strain co ordinate equation of the composing system of the nanometer precision actuator. A s a result, the theoretical relation among stress and strain and displacement is set up. The torque of the step motor produces a thrust to transmit the displace ment of the above system of the parts and assemblies to output the needed nano d isplacement. In the case of concrete analysis and calculating, the comparing met hod of film-roof is applied to analyze and calculate the motor axis, decelerato r axes, the screw pole and the nut. The analysis method of plane stress and stra in is used to analyze and calculate the shaft couplings and gears. The analysis method of beam stress and strain is used to do the pole of U shape. These calcul ation is belong to the physical non-linear problem. Under the condition of smal l deformation, the analysis way of the finite element can be combined with the a bove analyses and calculations. The elementary analysis results show that the na nometer precision actuator can be applied in STM nanofabrication.
基金Supported by the Funding from the Doctoral Research of Zhaoqing University(2013)
文摘As a systematic project, Chinese rural comprehensive reform (hereinafter referred to as "the reform") involved multiple dimensions such as rural governance, economy, culture, society and ecology, which laid a solid foundation for the overall reform in China. Western rural development theory had been proved to be insufficient to support Chinese rural reform. Therefore, theoretical innovation became urgent in the fields of rural governance, government functions, public finance and rural-urban integration etc. In recent years, Chinese rural comprehensive reform had been adjusting itself to the requirements of the "new normal". And during the process of agricultural modernization, the bottlenecks included the contradictory relationships between reform, development and overall stability, agricultural simplification and industrial diversification, economic development and environmental protection, rapid development of urban areas and slow progress of rural areas, grassroots governance and democratic supervision etc. Proper countermeasures would help to settle the above contradictions.
文摘In this review, the theorelical study on D-physics is summarized including D-(?) mixing, D meson decays, diquark contributions to D-physics, 1/Nc expansion, final state interactions and some discussions about BEPC and BES.
文摘A prevalent kind of failure of rock slopes is toppling instability.In secondary toppling failures,these instabilities are stimulated through some external factors.A type of secondary toppling failure is"slide-toe-toppling failure".In this instability,the upper and toe parts of the slope have the potential of sliding and toppling failures,respectively.This failure has been investigated by an analytical method and experimental tests.In the present study,at first,the literature review of toppling failure is presented.Then a simple theoretical solution is suggested for evaluating this failure.The recommended method is compared with the approach of AMINI et al through a typical example and three physical models.The results indicate that the proposed method is in good agreement with the results of AMINI et al’s approach and experimental models.Therefore,this suggested methodology can be applied to examining the stability of slide-toe-toppling failure.
文摘Contemporary Chinese political research usually adopts three basic methods of field investigation,theoretical creation and practical participation,which respectively correspond to the life logic,theoretical logic and practical logic in political functioning.Field investigation has become an important approach to"understanding Chinese politics"and promoting the localization of contemporary Chinese political research.Meanwhile,the new perspective of theoretical field besides empirical field marks the self-awareness and transition of the methodology in Chinese political research.To study Chinese experience itself,we should not only consciously focus upon China,but also continuously promote experience based on field research,as well as perfect and improve the research through the interaction between experience,theory and practice.The popular paradigms at home and abroad,including"authoritarianism"and"a developmental country",fail to explain Chinese experience and Chinese political development,so we still need a theoretical paradigm more appropriate to Chinese experience and practice.
文摘The application of mass spectrometry to investigations o{ gas-phase photochemistry and kinetics by flash photolysis was first reported in 1957. Mass spectrometry is advantageous and versatile for kinetics and mechanism studies since it is capable of detecting many different chemical species during the course of the reaction and one can determine kinetic rates of reactant decay and product growth. When the mass spectrometer is used to determine kinetic decays and growths following pulsed photolysis, it may be called flash photolysis with time-resolved mass spectrometry(FPTRMS). While experiments using FPTRMS can obtain direct and valuable information on kinetics and mechanism o[ chemical reactions, they are limited in some cases. For example, experiments can be conducted only at limited temperature and pressure ranges. Moreover,the experimental investigation alone does not always provide sufficient information for the reaction mecha-nism study, especially for a complex reaction system. The theoretical investigations including Ab Initio cal-culations, RRKM calculations and numerial simulations are useful and supplemental tools to the experimen-tal studies. Ab initio and RRKM calculations can be used to predict rate coefficients of chemical reactions ina much wider ranges of temperature and pressure. Important information on the mechanism can also be obtained from the theoretical studies. However, the validation and accuracy of the results from the theoreticalinvestigations need to be verified or adjusted by experimental results. As an example, a study of kinetics and mechanism of CF3CHC10 radical reactions using FPTRMS combining with the theoretical calculations is reported.
文摘The function of Gastrointestinal tract including intestine is to a large degree mechanical.The mechanical properties of the intestinal wall,and the tonic (sustained) and/or phasic(short-
文摘American anthropologist Gary.B.Palmer put forward a comprehensive theory—cultural linguistics in 1996.Centered in image and framed in cultural dimension,Palmer originates a new research method for linguistics by integrating three major branches of linguistic anthropology and cognitive linguistics,hopefully to provide a new perspective to study language and culture,enhance understanding between nations,and promote the process of the harmonious world.