As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decompos...As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decomposition of the input space by DiPLS,there are false alarms in the actual industrial process during fault detection.To address the above problems,a dynamic modeling method based on autoregressive-dynamic inner total PLS(AR-DiTPLS)is proposed.The method first uses the regression relation matrix to decompose the input space orthogonally,which reduces useless information for the predic-tion output in the quality-related dynamic subspace.Then,a vector autoregressive model(VAR)is constructed for the predic-tion score to separate dynamic information and static informa-tion.Based on the VAR model,appropriate statistical indicators are further constructed for online monitoring,which reduces the occurrence of false alarms.The effectiveness of the method is verified by a Tennessee-Eastman industrial simulation process and a three-phase flow system.展开更多
ReLM(Rephrasing Language Model)是当前性能领先的中文拼写纠错(CSC)模型。针对它在复杂语义场景中存在特征表达不足的问题,提出深层语义特征增强的ReLM——FeReLM(Feature-enhanced Rephrasing Language Model)。该模型利用深度可分...ReLM(Rephrasing Language Model)是当前性能领先的中文拼写纠错(CSC)模型。针对它在复杂语义场景中存在特征表达不足的问题,提出深层语义特征增强的ReLM——FeReLM(Feature-enhanced Rephrasing Language Model)。该模型利用深度可分离卷积(DSC)技术融合特征提取模型BGE(BAAI General Embeddings)生成的深层语义特征与ReLM生成的整体特征,从而有效提升模型对复杂上下文的解析力和拼写错误的识别纠正精度。首先,在Wang271K数据集上训练FeReLM,使模型持续学习句子中的深层语义和复杂表达;其次,迁移训练好的权重,从而将模型学习到的知识应用于新的数据集并进行微调。实验结果表明,在ECSpell和MCSC数据集上与ReLM、MCRSpell(Metric learning of Correct Representation for Chinese Spelling Correction)和RSpell(Retrieval-augmented Framework for Domain Adaptive Chinese Spelling Check)等模型相比,FeReLM的精确率、召回率、F1分数等关键指标的提升幅度可达0.6~28.7个百分点。此外,通过消融实验验证了所提方法的有效性。展开更多
基金supported by the National Natural Science Foundation of China(62273354,61673387,61833016).
文摘As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decomposition of the input space by DiPLS,there are false alarms in the actual industrial process during fault detection.To address the above problems,a dynamic modeling method based on autoregressive-dynamic inner total PLS(AR-DiTPLS)is proposed.The method first uses the regression relation matrix to decompose the input space orthogonally,which reduces useless information for the predic-tion output in the quality-related dynamic subspace.Then,a vector autoregressive model(VAR)is constructed for the predic-tion score to separate dynamic information and static informa-tion.Based on the VAR model,appropriate statistical indicators are further constructed for online monitoring,which reduces the occurrence of false alarms.The effectiveness of the method is verified by a Tennessee-Eastman industrial simulation process and a three-phase flow system.
文摘ReLM(Rephrasing Language Model)是当前性能领先的中文拼写纠错(CSC)模型。针对它在复杂语义场景中存在特征表达不足的问题,提出深层语义特征增强的ReLM——FeReLM(Feature-enhanced Rephrasing Language Model)。该模型利用深度可分离卷积(DSC)技术融合特征提取模型BGE(BAAI General Embeddings)生成的深层语义特征与ReLM生成的整体特征,从而有效提升模型对复杂上下文的解析力和拼写错误的识别纠正精度。首先,在Wang271K数据集上训练FeReLM,使模型持续学习句子中的深层语义和复杂表达;其次,迁移训练好的权重,从而将模型学习到的知识应用于新的数据集并进行微调。实验结果表明,在ECSpell和MCSC数据集上与ReLM、MCRSpell(Metric learning of Correct Representation for Chinese Spelling Correction)和RSpell(Retrieval-augmented Framework for Domain Adaptive Chinese Spelling Check)等模型相比,FeReLM的精确率、召回率、F1分数等关键指标的提升幅度可达0.6~28.7个百分点。此外,通过消融实验验证了所提方法的有效性。