In this paper a novel approach for the analysis of non stationary response of aircraft landing gear taxiing over an unevenness runway at variable velocity is explored, which is based on the power spectral density met...In this paper a novel approach for the analysis of non stationary response of aircraft landing gear taxiing over an unevenness runway at variable velocity is explored, which is based on the power spectral density method. A concerned analytical landing gear model for simulating actual aircraft taxiing is formulated. The equivalent linearization results obtained by probabilistic method are inducted to treat landing gear non linear parameters such as shock absorber air spring force, hydraulic damping and Coulomb friction, tire stiffness and damping. The power spectral density for non stationary analysis is obtained via variable substitution and then Fourier transform. A representative response quantity, the overload of the aircraft gravity center, is analyzed. The frequency response function of the gravity overload is derived. The case study demonstrates that under the same reached velocity the root mean square of the gravity acceleration response from constant acceleration taxiing is smaller than that from constant velocity taxiing and the root mean square of the gravity acceleration response from lower acceleration taxiing is greater than that from higher acceleration.展开更多
采用随机方法分析了蕴含轴向流动流体的BTA(boring and trepanning association)深孔镗杆在随机力下的横向随机动力行为。建模时考察了流固耦合镗杆承受的弯曲、拉伸和扭转变形;经Galerkin Method离散化处理,分析了BTA镗杆在有、无随机...采用随机方法分析了蕴含轴向流动流体的BTA(boring and trepanning association)深孔镗杆在随机力下的横向随机动力行为。建模时考察了流固耦合镗杆承受的弯曲、拉伸和扭转变形;经Galerkin Method离散化处理,分析了BTA镗杆在有、无随机激励两种情况的特征值和特征频率对振动特性的影响;利用响应方差最大值和谱密度解析了BTA镗杆横向振动的临界转速与临界失稳频率;明确了镗杆随转速、刚度、初始轴向总力和剪切模量等参数变化对系统振动特性的影响机制:镗杆转速变化对系统稳定性不再具有单调性,随BTA镗杆转速持续增加,系统可历经两次转速的临界失稳,相继出现二次失稳和二次稳定;增加系统等效刚度和等效剪切模量会促进工作过程的稳定,改变轴向力对工作过程稳定的影响不明显;并以随机振动物理试验信号的功率谱分析,验证了理论仿真结果与试验结果的一致性。该研究在一定程度上揭示了BTA深孔工艺系统运动状态的复杂性,这种研究模式为进一步分析在复杂状态下的运动演化提供了更多的可能。研究结论为更好地理解BTA深孔镗杆工作时的随机动力行为提供了依据,也为BTA深孔工艺过程的振动控制和参数优化奠定了理论基础。展开更多
文摘In this paper a novel approach for the analysis of non stationary response of aircraft landing gear taxiing over an unevenness runway at variable velocity is explored, which is based on the power spectral density method. A concerned analytical landing gear model for simulating actual aircraft taxiing is formulated. The equivalent linearization results obtained by probabilistic method are inducted to treat landing gear non linear parameters such as shock absorber air spring force, hydraulic damping and Coulomb friction, tire stiffness and damping. The power spectral density for non stationary analysis is obtained via variable substitution and then Fourier transform. A representative response quantity, the overload of the aircraft gravity center, is analyzed. The frequency response function of the gravity overload is derived. The case study demonstrates that under the same reached velocity the root mean square of the gravity acceleration response from constant acceleration taxiing is smaller than that from constant velocity taxiing and the root mean square of the gravity acceleration response from lower acceleration taxiing is greater than that from higher acceleration.
文摘采用随机方法分析了蕴含轴向流动流体的BTA(boring and trepanning association)深孔镗杆在随机力下的横向随机动力行为。建模时考察了流固耦合镗杆承受的弯曲、拉伸和扭转变形;经Galerkin Method离散化处理,分析了BTA镗杆在有、无随机激励两种情况的特征值和特征频率对振动特性的影响;利用响应方差最大值和谱密度解析了BTA镗杆横向振动的临界转速与临界失稳频率;明确了镗杆随转速、刚度、初始轴向总力和剪切模量等参数变化对系统振动特性的影响机制:镗杆转速变化对系统稳定性不再具有单调性,随BTA镗杆转速持续增加,系统可历经两次转速的临界失稳,相继出现二次失稳和二次稳定;增加系统等效刚度和等效剪切模量会促进工作过程的稳定,改变轴向力对工作过程稳定的影响不明显;并以随机振动物理试验信号的功率谱分析,验证了理论仿真结果与试验结果的一致性。该研究在一定程度上揭示了BTA深孔工艺系统运动状态的复杂性,这种研究模式为进一步分析在复杂状态下的运动演化提供了更多的可能。研究结论为更好地理解BTA深孔镗杆工作时的随机动力行为提供了依据,也为BTA深孔工艺过程的振动控制和参数优化奠定了理论基础。