When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model ...When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model non- Ganssian statistical structure of different source signals easily. By inferring only one parameter, a wide class of statistical distributions can be characterized. By using maximum likelihood (ML) approach and natural gradient descent, the learning rules of blind source separation (BSS) based on GGM are presented. The experiment of the ship-radiated noise demonstrates that the GGM can model the distributions of the ship-radiated noise and sea noise efficiently, and the learning rules based on GGM gives more successful separation results after comparing it with several conventional methods such as high order cumnlants and Gaussian mixture density function.展开更多
It has been challenging to correctly separate the mixed signals into source components when the source number is not known a priori.To reveal the complexity of the measured vibration signals,and provide the priori inf...It has been challenging to correctly separate the mixed signals into source components when the source number is not known a priori.To reveal the complexity of the measured vibration signals,and provide the priori information for the blind source separation,in this paper,we propose a novel source number estimation based on independent component analysis(ICA)and clustering evaluation analysis,and then carry out experiment studies with typical mechanical vibration signals from a shell structure.The results demonstrate that the proposed ICA based source number estimation performs stably and robustly for the shell structure.展开更多
文摘When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model non- Ganssian statistical structure of different source signals easily. By inferring only one parameter, a wide class of statistical distributions can be characterized. By using maximum likelihood (ML) approach and natural gradient descent, the learning rules of blind source separation (BSS) based on GGM are presented. The experiment of the ship-radiated noise demonstrates that the GGM can model the distributions of the ship-radiated noise and sea noise efficiently, and the learning rules based on GGM gives more successful separation results after comparing it with several conventional methods such as high order cumnlants and Gaussian mixture density function.
基金supported by China Postdoctoral Science Foundation (No. 2013M532032)National Nature Science Foundation of China (No. 51305329, 51035007)+1 种基金the Doctoral Foundation of Education Ministry of China (No. 20130201120040)the Shaanxi Postdoctoral Scientific research project
文摘It has been challenging to correctly separate the mixed signals into source components when the source number is not known a priori.To reveal the complexity of the measured vibration signals,and provide the priori information for the blind source separation,in this paper,we propose a novel source number estimation based on independent component analysis(ICA)and clustering evaluation analysis,and then carry out experiment studies with typical mechanical vibration signals from a shell structure.The results demonstrate that the proposed ICA based source number estimation performs stably and robustly for the shell structure.