An investigation was conducted on distribution pattern, site condition and population structure of yew Taxus cuspidata Sieb. et Zucc. in Muling Forest Bureau of Heilongjiang Province, China in April, 2005. Results sho...An investigation was conducted on distribution pattern, site condition and population structure of yew Taxus cuspidata Sieb. et Zucc. in Muling Forest Bureau of Heilongjiang Province, China in April, 2005. Results showed that yew is mainly distributed under the main storey of natural mixed forest of conifer and broadleaf, the soil moisture content of the yew site is high (40%-60%), the pH value of soil is relatively lower (4.7-5.5), and that the population structure of wild yew is not rational, belonging to the degeneration population, which is one of the reasons leading to the population decline. Although the site conditions of Muling area are suitable for the growth of wild yew, the population of wild yew shows a decline tendency, due to the fact that the middle-sized adult yew trees have been cut, young yews are often grazed by wildlife, and that the trunks of adult yew tend to be hollow.展开更多
Understanding population structure provides basic ecological data related to species and ecosystems.Our objective was to understand the mechanisms involved in the maintenance of Quercus aquifolioides populations.Using...Understanding population structure provides basic ecological data related to species and ecosystems.Our objective was to understand the mechanisms involved in the maintenance of Quercus aquifolioides populations.Using a 1 ha permanent sample plot data for Q.aquifolioides on Sejila Mountain,Tibet Autonomous Region(Tibet),China,we analyzed the population structure of Q.aquifolioides by combining data for diameter class,static life table and survival curve.Simultaneously,the spatial distribution of Q.aquifolioides was studied using Ripley’s L Function in point pattern analysis.The results showed:(1) Individuals in Q.aquifolioides populations were mainly aggregated in the youngest age classes,that accounted for94.3% of the individuals; the older age classes had much smaller populations.Although the youngest age classes(ClassesⅠ and Ⅱ) had fewer individuals than Class Ⅲ,the total number of individuals in classes Ⅰ and Ⅱ was also greater than in classes Ⅳ to Ⅸ.In terms of tree height,fewsaplings,more medium-sized saplings and few large-sized trees were found.The diameter class structure of Q.aquifolioides populations formed an atypical ‘pyramid’type; the population was expanding,but growth was limited,tending toward a stable population.(2) Mortality of Q.aquifolioides increased continuously with age; life expectancy decreased over time,and the survivorship curve was close to a Deevey I curve.(3) The spatial distribution pattern of Q.aquifolioides varied widely across different developmental stages.Saplings and medium-sized tree showed aggregated distributions at the scales of 0–33 m and 0–29 m,respectively.The aggregation intensities of saplings and medium-sized trees at small scales were significantly stronger than that of large-sized trees.However,large-sized trees showed a random distribution at most scales.(4) No correlation was observed among saplings,medium-and large-sized trees at small scales,while a significant and negative association was observed as the scale increased.Strong competition was found among saplings,medium-and large-sized trees,while no significant association was observed between medium-and largesized trees at all scales.Biotic interactions and local ecological characteristics influenced the spatial distribution pattern of Q.aquifolioides populations most strongly.展开更多
We investigate the flow patterns of irregular sand particles under avalanching mode in a rotating drum by using the spatial filtering velocimetry technique.By exploring the variations of velocity distribution of granu...We investigate the flow patterns of irregular sand particles under avalanching mode in a rotating drum by using the spatial filtering velocimetry technique.By exploring the variations of velocity distribution of granular flow,we find a type of avalanching pattern of irregular sand particles which is similar to that of spherical particles flow.Due to the fact that the initial position of avalanche in this pattern locates at the middle of the drum and the avalanche propagates toward the edge area gradually,we named it as mid-to-edge avalanching pattern.Furthermore,we find another avalanching pattern which slumps from the edge and propagates toward the opposite edge of the flow surface,named as edge-to-edge pattern.By analyzing the temporal and spatial characteristics of these two types of avalanching patterns,we discover that these two types of avalanche patterns are caused by that the avalanching particles constantly perturb the axial adjacent particles.Thus,the particles on the flow surface are involved in avalanching sequentially in order of the axial distance from the initial position.展开更多
The canopy of subtropical natural forests usually consists of several co-dominant populations(CDPs),which play a crucial role in forest structure,formation of the forest environment,and ecological function.However,lit...The canopy of subtropical natural forests usually consists of several co-dominant populations(CDPs),which play a crucial role in forest structure,formation of the forest environment,and ecological function.However,little attention has been given to changes in spatial patterns in CDPs during natural succession.Cyclobalanopsis glauca(Thunb.)Oerst.,Quercus variabilis Blume,and Pinus yunnanensis var.tenuifolia W.C.Cheng & Y.W.Law are canopy species that form CDPs in zonal forests along the Nanpan River in southwest China.We used the g(r) function and its bivariate distribution model,g_(12)(r),which is based on distances between pairs of points,to explore the dynamics of the three CDP species with respect to distribution patterns and spatial correlations in two secondary forests(one 30-year-old forest [30-YF] and one 57-year-old forest [57-YF]).The following key results were obtained:(1) there was a clumped pattern in the 30-YF,but the intensity of aggregation varied among populations and life stages.The distribution pattern gradually shifted to become random with longer succes sion time(i.e.,30-YF vs.57-YF),expansion of the observation scale(r=0-20 m),and at later life stages.(2) Aside from the mid-sized C.glauca trees and large P.yunnanensis trees,the trees repulsed each other at certain scales(r=0-2,5-6,11-12,14-16 m) in the 30-YF.Almost all of the life stages in the CDPs were independently correlated.This independent correlation was exacerbated by a longer succession time.(3) An increase in life stages and longer succession also promoted independent changes in intraspecific correlations.(4) Intraspecific correlations were stronger than interspecific correlations.Our results showed that reducing exclusive competition is essential to coexistence in CDPs.Inter-and intra-specific repulsion may occur at the same time,but intraspecific repulsion was the main driving force behind the random distributions and independent correlations.展开更多
Accurately estimating forest net primary productivity (NPP) plays an important role in study of global carbon budget. A NPP model reflecting the synthetic effects of both biotic (forest stand age, A and stem volume, V...Accurately estimating forest net primary productivity (NPP) plays an important role in study of global carbon budget. A NPP model reflecting the synthetic effects of both biotic (forest stand age, A and stem volume, V) and climatic factors (mean annual actual evapotranspiration, E) was developed for Chinese pine (Pinus tabulaeformis) forest by making full use of Forest Inventory Data (FID) and dynamically assessing forest productivity. The NPP of Chinese pine forest was estimated by using this model and the fourth FID (1989–1993), and the spatial pattern of NPP of Chinese pine forest was given by Geography Information System (GIS) software. The results indicated that mean NPP value, of Chinese pine forest was 7.82 t m?2·a?1 and varied at the range of 3.32–11.87 t hm?2·a?1. NPP distribution of Chinese pine forests was significantly different in different regions, higher in the south and lower in the north of China. In terms of the main distribution regions of Chinese pine, the NPPs of Chinese pine forest in Shanxi and Shaanxi provinces were in middle level, with an average NPP of 7.4 t hm?2·a?1, that in the southern and the eastern parts (e.g. Shichuang Hunan, Henan, and Liaoning provinces) was higher (over 7.7 t hm?2·a?1), and that in the northern part and western part (e.g. Neimenggu and Ningxia provinces) was lower (below 5 t hm?2·a?1). This study provides an efficient way for using FID to understand the dynamics of foest NPP and evaluate its effects on global climate change. Keywords Forest NPP - Forest inventory data - Chinese pine forest - Climatic and biotic NPP model - Spatial distribution pattern CLC number S727.22 - S757.2 Document code A Foundation item: This study was supported by the National Natural Science Foundation of China (Nos. 30028001, 49905005), National Key Basic Research Specific Foundation (G1999043407); the Chinese Academy of Sciences (KSC2-1-07).Biography: ZHAO Min (1973-), female, Ph. D. in Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, P. R. China.Responsible editor: Zhu Hong展开更多
A Norton-Rice distribution(NRD)is a versatile,flexible distribution for k ordered distances from a random location to the k nearest objects.In a context of plotless density estimation(PDE)with n randomly chosen sample...A Norton-Rice distribution(NRD)is a versatile,flexible distribution for k ordered distances from a random location to the k nearest objects.In a context of plotless density estimation(PDE)with n randomly chosen sample locations,and distances measured to the k=6 nearest objects,the NRD provided a good fit to distance data from seven populations with a census of forest tree stem locations.More importantly,the three parameters of a NRD followed a simple trend with the order(1,…,6)of observed distances.The trend is quantified and exploited in a proposed new PDE through a joint maximum likelihood estimation of the NRD parameters expressed as a functions of distance order.In simulated probability sampling from the seven populations,the proposed PDE had the lowest overall bias with a good performance potential when compared to three alternative PDEs.However,absolute bias increased by 0.8 percentage points when sample size decreased from 20 to 10.In terms of root mean squared error(RMSE),the new proposed estimator was at par with an estimator published in Ecology when this study was wrapping up,but otherwise superior to the remaining two investigated PDEs.Coverage of nominal 95%confidence intervals averaged 0.94 for the new proposed estimators and 0.90,0.96,and 0.90 for the comparison PDEs.Despite tangible improvements in PDEs over the last decades,a globally least biased PDE remains elusive.展开更多
文摘An investigation was conducted on distribution pattern, site condition and population structure of yew Taxus cuspidata Sieb. et Zucc. in Muling Forest Bureau of Heilongjiang Province, China in April, 2005. Results showed that yew is mainly distributed under the main storey of natural mixed forest of conifer and broadleaf, the soil moisture content of the yew site is high (40%-60%), the pH value of soil is relatively lower (4.7-5.5), and that the population structure of wild yew is not rational, belonging to the degeneration population, which is one of the reasons leading to the population decline. Although the site conditions of Muling area are suitable for the growth of wild yew, the population of wild yew shows a decline tendency, due to the fact that the middle-sized adult yew trees have been cut, young yews are often grazed by wildlife, and that the trunks of adult yew tend to be hollow.
基金financially supported by the National Key Technology Support Program(Grant No.2013BAC04B01)the National Natural Science Foundation of China(Grant No.31460200)
文摘Understanding population structure provides basic ecological data related to species and ecosystems.Our objective was to understand the mechanisms involved in the maintenance of Quercus aquifolioides populations.Using a 1 ha permanent sample plot data for Q.aquifolioides on Sejila Mountain,Tibet Autonomous Region(Tibet),China,we analyzed the population structure of Q.aquifolioides by combining data for diameter class,static life table and survival curve.Simultaneously,the spatial distribution of Q.aquifolioides was studied using Ripley’s L Function in point pattern analysis.The results showed:(1) Individuals in Q.aquifolioides populations were mainly aggregated in the youngest age classes,that accounted for94.3% of the individuals; the older age classes had much smaller populations.Although the youngest age classes(ClassesⅠ and Ⅱ) had fewer individuals than Class Ⅲ,the total number of individuals in classes Ⅰ and Ⅱ was also greater than in classes Ⅳ to Ⅸ.In terms of tree height,fewsaplings,more medium-sized saplings and few large-sized trees were found.The diameter class structure of Q.aquifolioides populations formed an atypical ‘pyramid’type; the population was expanding,but growth was limited,tending toward a stable population.(2) Mortality of Q.aquifolioides increased continuously with age; life expectancy decreased over time,and the survivorship curve was close to a Deevey I curve.(3) The spatial distribution pattern of Q.aquifolioides varied widely across different developmental stages.Saplings and medium-sized tree showed aggregated distributions at the scales of 0–33 m and 0–29 m,respectively.The aggregation intensities of saplings and medium-sized trees at small scales were significantly stronger than that of large-sized trees.However,large-sized trees showed a random distribution at most scales.(4) No correlation was observed among saplings,medium-and large-sized trees at small scales,while a significant and negative association was observed as the scale increased.Strong competition was found among saplings,medium-and large-sized trees,while no significant association was observed between medium-and largesized trees at all scales.Biotic interactions and local ecological characteristics influenced the spatial distribution pattern of Q.aquifolioides populations most strongly.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572201,91634202,and 11902190).
文摘We investigate the flow patterns of irregular sand particles under avalanching mode in a rotating drum by using the spatial filtering velocimetry technique.By exploring the variations of velocity distribution of granular flow,we find a type of avalanching pattern of irregular sand particles which is similar to that of spherical particles flow.Due to the fact that the initial position of avalanche in this pattern locates at the middle of the drum and the avalanche propagates toward the edge area gradually,we named it as mid-to-edge avalanching pattern.Furthermore,we find another avalanching pattern which slumps from the edge and propagates toward the opposite edge of the flow surface,named as edge-to-edge pattern.By analyzing the temporal and spatial characteristics of these two types of avalanching patterns,we discover that these two types of avalanche patterns are caused by that the avalanching particles constantly perturb the axial adjacent particles.Thus,the particles on the flow surface are involved in avalanching sequentially in order of the axial distance from the initial position.
基金financially supported by the National Key Research and Development Program of China(Grant No.2016YFC0502101-04)the Guangxi Key Research and Development Program (Grant No.Guike AB163 80254)+1 种基金the National Science Foundation of China (Grant No.31400542)Guangxi Special Fund Project for Innovation-driven Development (Grant No.AA 17204087-8)。
文摘The canopy of subtropical natural forests usually consists of several co-dominant populations(CDPs),which play a crucial role in forest structure,formation of the forest environment,and ecological function.However,little attention has been given to changes in spatial patterns in CDPs during natural succession.Cyclobalanopsis glauca(Thunb.)Oerst.,Quercus variabilis Blume,and Pinus yunnanensis var.tenuifolia W.C.Cheng & Y.W.Law are canopy species that form CDPs in zonal forests along the Nanpan River in southwest China.We used the g(r) function and its bivariate distribution model,g_(12)(r),which is based on distances between pairs of points,to explore the dynamics of the three CDP species with respect to distribution patterns and spatial correlations in two secondary forests(one 30-year-old forest [30-YF] and one 57-year-old forest [57-YF]).The following key results were obtained:(1) there was a clumped pattern in the 30-YF,but the intensity of aggregation varied among populations and life stages.The distribution pattern gradually shifted to become random with longer succes sion time(i.e.,30-YF vs.57-YF),expansion of the observation scale(r=0-20 m),and at later life stages.(2) Aside from the mid-sized C.glauca trees and large P.yunnanensis trees,the trees repulsed each other at certain scales(r=0-2,5-6,11-12,14-16 m) in the 30-YF.Almost all of the life stages in the CDPs were independently correlated.This independent correlation was exacerbated by a longer succession time.(3) An increase in life stages and longer succession also promoted independent changes in intraspecific correlations.(4) Intraspecific correlations were stronger than interspecific correlations.Our results showed that reducing exclusive competition is essential to coexistence in CDPs.Inter-and intra-specific repulsion may occur at the same time,but intraspecific repulsion was the main driving force behind the random distributions and independent correlations.
基金This study was supported by the National Natural Science Foundation of China (Nos. 30028001 49905005)+1 种基金 National Key Basic Re-search Specific Foundation (G1999043407) the Chinese Acade
文摘Accurately estimating forest net primary productivity (NPP) plays an important role in study of global carbon budget. A NPP model reflecting the synthetic effects of both biotic (forest stand age, A and stem volume, V) and climatic factors (mean annual actual evapotranspiration, E) was developed for Chinese pine (Pinus tabulaeformis) forest by making full use of Forest Inventory Data (FID) and dynamically assessing forest productivity. The NPP of Chinese pine forest was estimated by using this model and the fourth FID (1989–1993), and the spatial pattern of NPP of Chinese pine forest was given by Geography Information System (GIS) software. The results indicated that mean NPP value, of Chinese pine forest was 7.82 t m?2·a?1 and varied at the range of 3.32–11.87 t hm?2·a?1. NPP distribution of Chinese pine forests was significantly different in different regions, higher in the south and lower in the north of China. In terms of the main distribution regions of Chinese pine, the NPPs of Chinese pine forest in Shanxi and Shaanxi provinces were in middle level, with an average NPP of 7.4 t hm?2·a?1, that in the southern and the eastern parts (e.g. Shichuang Hunan, Henan, and Liaoning provinces) was higher (over 7.7 t hm?2·a?1), and that in the northern part and western part (e.g. Neimenggu and Ningxia provinces) was lower (below 5 t hm?2·a?1). This study provides an efficient way for using FID to understand the dynamics of foest NPP and evaluate its effects on global climate change. Keywords Forest NPP - Forest inventory data - Chinese pine forest - Climatic and biotic NPP model - Spatial distribution pattern CLC number S727.22 - S757.2 Document code A Foundation item: This study was supported by the National Natural Science Foundation of China (Nos. 30028001, 49905005), National Key Basic Research Specific Foundation (G1999043407); the Chinese Academy of Sciences (KSC2-1-07).Biography: ZHAO Min (1973-), female, Ph. D. in Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, P. R. China.Responsible editor: Zhu Hong
基金The work was supported by the Canadian Forest Service.
文摘A Norton-Rice distribution(NRD)is a versatile,flexible distribution for k ordered distances from a random location to the k nearest objects.In a context of plotless density estimation(PDE)with n randomly chosen sample locations,and distances measured to the k=6 nearest objects,the NRD provided a good fit to distance data from seven populations with a census of forest tree stem locations.More importantly,the three parameters of a NRD followed a simple trend with the order(1,…,6)of observed distances.The trend is quantified and exploited in a proposed new PDE through a joint maximum likelihood estimation of the NRD parameters expressed as a functions of distance order.In simulated probability sampling from the seven populations,the proposed PDE had the lowest overall bias with a good performance potential when compared to three alternative PDEs.However,absolute bias increased by 0.8 percentage points when sample size decreased from 20 to 10.In terms of root mean squared error(RMSE),the new proposed estimator was at par with an estimator published in Ecology when this study was wrapping up,but otherwise superior to the remaining two investigated PDEs.Coverage of nominal 95%confidence intervals averaged 0.94 for the new proposed estimators and 0.90,0.96,and 0.90 for the comparison PDEs.Despite tangible improvements in PDEs over the last decades,a globally least biased PDE remains elusive.