为准确评估监测条件有限的平原河网小流域河水水质演变趋势,预知水质变化情况,利用浙江省台州市南官河2021年6月至2023年6月的水质监测数据,基于贝叶斯优化算法(Bayesian optimization algorithm,BOA)和双向长短期记忆神经网络(bi-direc...为准确评估监测条件有限的平原河网小流域河水水质演变趋势,预知水质变化情况,利用浙江省台州市南官河2021年6月至2023年6月的水质监测数据,基于贝叶斯优化算法(Bayesian optimization algorithm,BOA)和双向长短期记忆神经网络(bi-directional long short-term memory,BiLSTM)建立了地表水水质预测模型。利用箱线图和Spearman秩相关系数挖掘水质的时空分布规律,划定中间河段4个站点为重点研究区域,NH3—N和TP为治理重点。通过BOA和双向信息传递机制优化LSTM超参数和模型结构,结果显示,用BOA-BiLSTM模型预测,未来4 h NH_(3)—N浓度的均方根误差(root mean squared error,RMSE)分别为0.2132,0.3689,0.3327和0.3740;未来4 h TP浓度的RMSE分别为0.0246,0.0321,0.0422和0.0334。二者较基准LSTM模型的预测结果分别提升了15.8%,10.6%,10.6%,17.1%和22.6%,3.6%,14.8%,11.8%。以磨石桥NH_(3)—N浓度为例,对比了时序预测与加入上下游数据后的多变量预测结果,发现时序预测对监测参数较少的平原河网具有更强的适用性和更高的预测精度。同时结合研究区域现场勘查和地块分类情况,指出生活源、污水收集及处理设施不完善、雨污合流应为整治重点。当监测参数有限时,本文模型有助于提升对水质异常的监管水平,为环境执法、水环境治理提供数据支撑。展开更多
为解决现有基于循环神经网络的空气质量预测模型在数据质量、表达数据复杂依赖性和处理突变特征方面存在的问题,研究提出一种融入双向长短期记忆网络和多头注意力机制的空气质量预测模型。该模型首先采用多种混合方法对空气质量数据进...为解决现有基于循环神经网络的空气质量预测模型在数据质量、表达数据复杂依赖性和处理突变特征方面存在的问题,研究提出一种融入双向长短期记忆网络和多头注意力机制的空气质量预测模型。该模型首先采用多种混合方法对空气质量数据进行处理,以提高数据模型预测能力的上限。其次,模型利用双向长短期记忆网络捕获空气质量数据中的复杂依赖性,解决了传统模型在时间序列数据中捕获信息较少的问题。再次,采用多头注意力机制捕获突变空气数据特征,合理赋值其权重占比,从而提高模型预测的精准度。最后,加入dropout机制和Adam梯度下降对模型进行优化。为验证模型的有效性,将2022年上海市空气质量监测站的污染物浓度数据以及气象站监测数据作为数据集设计试验,并与现有模型进行对比。试验结果显示,双向长短期记忆网络-多头注意力机制(Bidirectional Long Short Term Memory Network-Multi-Head Attention Mechanism,Bi-LSTM-MA)模型与未经优化的长短期记忆网络(Long Short Term Memory Network,LSTM)模型在预测各类空气质量指标上相比,均方误差、均方根误差、渐进均方误差和R^(2)分别最高提升了38.96%、21.88%、23.52%和4.02%,表明该模型具有更好的预测效果。展开更多
文摘为准确评估监测条件有限的平原河网小流域河水水质演变趋势,预知水质变化情况,利用浙江省台州市南官河2021年6月至2023年6月的水质监测数据,基于贝叶斯优化算法(Bayesian optimization algorithm,BOA)和双向长短期记忆神经网络(bi-directional long short-term memory,BiLSTM)建立了地表水水质预测模型。利用箱线图和Spearman秩相关系数挖掘水质的时空分布规律,划定中间河段4个站点为重点研究区域,NH3—N和TP为治理重点。通过BOA和双向信息传递机制优化LSTM超参数和模型结构,结果显示,用BOA-BiLSTM模型预测,未来4 h NH_(3)—N浓度的均方根误差(root mean squared error,RMSE)分别为0.2132,0.3689,0.3327和0.3740;未来4 h TP浓度的RMSE分别为0.0246,0.0321,0.0422和0.0334。二者较基准LSTM模型的预测结果分别提升了15.8%,10.6%,10.6%,17.1%和22.6%,3.6%,14.8%,11.8%。以磨石桥NH_(3)—N浓度为例,对比了时序预测与加入上下游数据后的多变量预测结果,发现时序预测对监测参数较少的平原河网具有更强的适用性和更高的预测精度。同时结合研究区域现场勘查和地块分类情况,指出生活源、污水收集及处理设施不完善、雨污合流应为整治重点。当监测参数有限时,本文模型有助于提升对水质异常的监管水平,为环境执法、水环境治理提供数据支撑。
文摘为解决现有基于循环神经网络的空气质量预测模型在数据质量、表达数据复杂依赖性和处理突变特征方面存在的问题,研究提出一种融入双向长短期记忆网络和多头注意力机制的空气质量预测模型。该模型首先采用多种混合方法对空气质量数据进行处理,以提高数据模型预测能力的上限。其次,模型利用双向长短期记忆网络捕获空气质量数据中的复杂依赖性,解决了传统模型在时间序列数据中捕获信息较少的问题。再次,采用多头注意力机制捕获突变空气数据特征,合理赋值其权重占比,从而提高模型预测的精准度。最后,加入dropout机制和Adam梯度下降对模型进行优化。为验证模型的有效性,将2022年上海市空气质量监测站的污染物浓度数据以及气象站监测数据作为数据集设计试验,并与现有模型进行对比。试验结果显示,双向长短期记忆网络-多头注意力机制(Bidirectional Long Short Term Memory Network-Multi-Head Attention Mechanism,Bi-LSTM-MA)模型与未经优化的长短期记忆网络(Long Short Term Memory Network,LSTM)模型在预测各类空气质量指标上相比,均方误差、均方根误差、渐进均方误差和R^(2)分别最高提升了38.96%、21.88%、23.52%和4.02%,表明该模型具有更好的预测效果。