期刊文献+
共找到13,980篇文章
< 1 2 250 >
每页显示 20 50 100
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
1
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 fault diagnosis Deep learning Multi-scale convolution Open-circuit Convolutional neural network
在线阅读 下载PDF
TDNN:A novel transfer discriminant neural network for gear fault diagnosis of ammunition loading system manipulator
2
作者 Ming Li Longmiao Chen +3 位作者 Manyi Wang Liuxuan Wei Yilin Jiang Tianming Chen 《Defence Technology(防务技术)》 2025年第3期84-98,共15页
The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fau... The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fault characteristics under different loads is markedly inconsistent,and data is hard to label,which makes it difficult for the traditional diagnosis method based on single-condition training to generalize to different conditions.To address these issues,the paper proposes a novel transfer discriminant neural network(TDNN)for gear fault diagnosis.Specifically,an optimized joint distribution adaptive mechanism(OJDA)is designed to solve the distribution alignment problem between two domains.To improve the classification effect within the domain and the feature recognition capability for a few labeled data,metric learning is introduced to distinguish features from different fault categories.In addition,TDNN adopts a new pseudo-label training strategy to achieve label replacement by comparing the maximum probability of the pseudo-label with the test result.The proposed TDNN is verified in the experimental data set of the artillery manipulator device,and the diagnosis can achieve 99.5%,significantly outperforming other traditional adaptation methods. 展开更多
关键词 Manipulator gear fault diagnosis Reciprocating machine Domain adaptation Pseudo-label training strategy Transfer discriminant neural network
在线阅读 下载PDF
Application of Maximum Probability Approach to the Fault Diagnosis of a Servo System 被引量:3
3
作者 马东升 胡佑德 戴凤智 《Journal of Beijing Institute of Technology》 EI CAS 2002年第1期29-32,共4页
In an actual control system, it is often difficult to find out where the faults are if only based on the outside fault phenomena, acquired frequently from a fault system. So the fault diagnosis by outside fault phenom... In an actual control system, it is often difficult to find out where the faults are if only based on the outside fault phenomena, acquired frequently from a fault system. So the fault diagnosis by outside fault phenomena is considered. Based on the theory of fuzzy recognition and fault diagnosis, this method only depends on experience and statistical data to set up fuzzy query relationship between the outside phenomena (fault characters) and the fault sources (fault patterns). From this relationship the most probable fault sources can be obtained, to attain the goal of quick diagnosis. Based on the above approach, the standard fuzzy relationship matrix is stored in the computer as a system database. And experiment data are given to show the fault diagnosis results. The important parameters can be on line sampled and analyzed, and when faults occur, faults can be found, the alarm is given and the controller output is regulated. 展开更多
关键词 maximum probability approach fault diagnosis fault tree servo system
在线阅读 下载PDF
Fault Diagnosis of Vehicle Transmission System Based on Rough Set Theory
4
作者 李晓雷 张振华 +1 位作者 吴晓兵 田春姝 《Journal of Beijing Institute of Technology》 EI CAS 2001年第2期204-208,共5页
Rough set theory is used to treat the data of vehicle transmission system faults. The minimum fault feature vector can be obtained by calculating the importance and dependency of each attribute. Real time diagnosis, ... Rough set theory is used to treat the data of vehicle transmission system faults. The minimum fault feature vector can be obtained by calculating the importance and dependency of each attribute. Real time diagnosis, as a result, can be actualized. Ultimate decision making can be done by analyzing the consistency of decision information. The result shows that rough set theory is useful and possesses its unique merits in this field. 展开更多
关键词 rough set fault diagnosis VEHICLE transmission system
在线阅读 下载PDF
Fault diagnosis for down-hole conditions of sucker rod pumping systems based on the FBH-SC method 被引量:9
5
作者 Kun Li Xian-Wen Gao +1 位作者 Hai-Bo Zhou Ying Han 《Petroleum Science》 SCIE CAS CSCD 2015年第1期135-147,共13页
Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accurac... Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accuracy of the training samples. In order to reduce the errors of manual classification, an automatic clustering algorithm is proposed and applied to diagnose down-hole conditions of pumping systems. The spectral clustering (SC) is a new clustering algorithm, which is suitable for any data distribution. However, it is sensitive to initial cluster centers and scale parameters, and needs to predefine the cluster number. In order to overcome these shortcom- ings, we propose an automatic clustering algorithm, fast black hole-spectral clustering (FBH-SC). The FBH algo- rithm is used to replace the K-mean method in SC, and a CritC index function is used as the target function to automatically choose the best scale parameter and clus- tering number in the clustering process. Different simulation experiments were designed to define the relationship among scale parameter, clustering number, CritC index value, and clustering accuracy. Finally, an example is given to validate the effectiveness of the proposed algorithm. 展开更多
关键词 Sucker rod pumping systems fault diagnosis Spectral clustering Automatic clustering Fast black hole algorithm
在线阅读 下载PDF
Application of the fault diagnosis strategy based on hierarchical information fusion in motors fault diagnosis
6
作者 XIA Li FEI Qi 《Journal of Marine Science and Application》 2006年第1期62-68,共7页
This paper has analyzed merits and demerits of both neural network technique and of the information fusion methods based on the D-S (dempster-shafer evidence) Theory as well as their complementarity, proposed the hier... This paper has analyzed merits and demerits of both neural network technique and of the information fusion methods based on the D-S (dempster-shafer evidence) Theory as well as their complementarity, proposed the hierarchical information fusion fault diagnosis strategy by combining the neural network technique and the fused decision diagnosis based on D-S Theory, and established a corresponding functional model. Thus, we can not only solve a series of problems caused by rapid growth in size and complexity of neural network structure with diagnosis parameters increasing, but also can provide effective method for basic probability assignment in D-S Theory. The application of the strategy to diagnosing faults of motor bearings has proved that this method is of fairly high accuracy and reliability in fault diagnosis. 展开更多
关键词 neural network information fusion dempster-shafer evidence theory fault diagnosis MOTOR
在线阅读 下载PDF
Fault diagnosis of electric transformers based on infrared image processing and semi-supervised learning 被引量:5
7
作者 Jian Fang Fan Yang +2 位作者 Rui Tong Qin Yu Xiaofeng Dai 《Global Energy Interconnection》 EI CAS CSCD 2021年第6期596-607,共12页
It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and ac... It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and accurate manner.To this end,a transformer fault diagnosis method based on infrared image processing and semi-supervised learning is proposed herein.First,we perform feature extraction on the collected infrared-image data to extract temperature,texture,and shape features as the model reference vectors.Then,a generative adversarial network(GAN)is constructed to generate synthetic samples for the minority subset of labelled samples.The proposed method can learn information from unlabeled sample data,unlike conventional supervised learning methods.Subsequently,a semi-supervised graph model is trained on the entire dataset,i.e.,both labeled and unlabeled data.Finally,we test the proposed model on an actual dataset collected from a Chinese electricity provider.The experimental results show that the use of feature extraction,sample generation,and semi-supervised learning model can improve the accuracy of transformer fault classification.This verifies the effectiveness of the proposed method. 展开更多
关键词 TRANSFORMER fault diagnosis Infrared image Generative adversarial network Semi-supervised learning
在线阅读 下载PDF
Fault Diagnosis Method Based on Fractal Theory and Its Application in Wind Power Systems 被引量:1
8
作者 赵玲 黄大荣 宋军 《Defence Technology(防务技术)》 SCIE EI CAS 2012年第3期167-173,共7页
The non-linear dynamic theory brought a new method for recognizing and predicting complex non-linear dynamic behaviors. The non-linear behavior of vibration signals can be described by using fractal dimension quantita... The non-linear dynamic theory brought a new method for recognizing and predicting complex non-linear dynamic behaviors. The non-linear behavior of vibration signals can be described by using fractal dimension quantitatively. In this paper, a fractal dimension calculation method for discrete signals in the fractal theory was applied to extract the fractal dimension feature vectors and classified various fault types. Based on the wavelet packet transform, the energy feature vectors were extracted after the vibration signal was decomposed and reconstructed. Then, a wavelet neural network was used to recognize the mechanical faults. Finally, the fault diagnosis for a wind power system was taken as an example to show the method's feasibility. 展开更多
关键词 automatic control technology FRACTAL wavelet packet transform feature extraction fault diagnosis
在线阅读 下载PDF
Fault diagnosis of AMT gear shifting process based on semi-quantitative SDG model
9
作者 LIU Hai-ou MENG Dong-mei PENG Jian-xin 《Journal of Beijing Institute of Technology》 EI CAS 2016年第3期316-322,共7页
In order to diagnose gear shifting process in automated manual transmission(AMT),a semi-quantitative signed directed graph(SDG)model is applied.Mathematical models are built by analysis of the power train dynamic ... In order to diagnose gear shifting process in automated manual transmission(AMT),a semi-quantitative signed directed graph(SDG)model is applied.Mathematical models are built by analysis of the power train dynamic and the gear shifting control process.The SDG model is built based on related priori knowledge.By calculating the fuzzy membership degree of each compatible passway and its possible fault source,we get the possibilities of failure for each possible fault source.We begin with the nodes with the maximum possibility of failure in order to find the failed part.The diagnosis example shows that it is feasible to use the semi-quantitative SDG model for fault diagnosis of the gear shifting process in AMT. 展开更多
关键词 semi-quantitative signed directed graph(SDG) fault diagnosis gear shifting process automated manual transmission (AMT)
在线阅读 下载PDF
THE FAULT DIAGNOSIS TECHNOLOGY BASED ON FRACTAL GEOMETRY FOR LOGGING TRUCK ENGINE
10
作者 杜元虎 朱建新 吴跃成 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1996年第4期65-67,共3页
The paper discusses the fundamental conceptions and properties of fractal geometry.The definitions of fractal dimension are described and the mathods of calculating fractal dimension are introduced. The paper research... The paper discusses the fundamental conceptions and properties of fractal geometry.The definitions of fractal dimension are described and the mathods of calculating fractal dimension are introduced. The paper researches the peculiarities of fault diagnosis for logging truck engine and puts forward the technical way of diagnosing the faults with the help of the fractal geometry. 展开更多
关键词 Logging truck fault diagnosis Fractal Fractal dimension ENGINE
在线阅读 下载PDF
Development of Fault Diagnosis System for Spacecraft Based on Fault Tree and G2 被引量:5
11
作者 纪常伟 荣吉利 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期444-448,共5页
Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level,... Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level, subsystem level, component level and element level. Secondly, a hierarchical diagnosis model is expressed with four layers, i.e., sensors layer, function layer, behavior layer and structure layer. These layers are used to work together to accomplish the fault alarm, diagnosis and localization. Thirdly, a fault-tree-oriented hybrid knowledge representation based on frame and generalized rule and its relevant reasoning strategy is put forward. Finally, a diagnosis case for spacecraft power system is exemplified combining the above with a powerful expert system development tool G2. 展开更多
关键词 spacecraft fault diagnosis fault tree hierarchical diagnosis model G2
在线阅读 下载PDF
SIMULATION INVESTIGATION OF AEROENGINE FAULT DIAGNOSIS USING NEURAL NETWORKS 被引量:3
12
作者 叶志锋 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期157-163,共7页
Traditional scheduled maintenance systems are costly, labor intensive, and typically provide noncomprehensive detection and diagnosis of engine faults. The engine monitoring system (EMS) on modern aircrafts has the p... Traditional scheduled maintenance systems are costly, labor intensive, and typically provide noncomprehensive detection and diagnosis of engine faults. The engine monitoring system (EMS) on modern aircrafts has the potential to provide maintenance personnel with valuable information for detecting and diagnosing engine faults. In this paper, an RBF neural network approach is applied to aeroengine gas path fault diagnosis. It can detect multiple faults and quantify the amount of deterioration of the various engine components as a function of measured parameters. The results obtained demonstrate that the accuracy of diagnosis is consistent with practical requirements. The approach takes advantage of the nonlinear mapping feature of neural networks to capture the appropriate characteristics of an aeroengine. The methodology is generic and applicable to other similar plants having high complexity. 展开更多
关键词 neural network fault diagnosis AEROENGINE
在线阅读 下载PDF
ROTOR FAULT DIAGNOSIS OF BRUSHLESS AC GENERATOR WITH ROTARY RECTIFIER 被引量:1
13
作者 龚春英 严仰光 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期64-71,共8页
With a three-phase bridge type rectification, some typical rotor faults of a brushless AC generator with a rotary rectifier is analyzed in this paper by the help of computer digital simulation. It is also proPOsed tha... With a three-phase bridge type rectification, some typical rotor faults of a brushless AC generator with a rotary rectifier is analyzed in this paper by the help of computer digital simulation. It is also proPOsed that the rotor faults, whether exist or not, and the causes of the faults may be determined through the monitoring of the average value of the exciting current of the exciter and its principal harmonics. 展开更多
关键词 brushless excitation rotors fault diagnosis SIMULATION
在线阅读 下载PDF
Fault Diagnosis of Mechanical Equipments Through Spectrometric oil Analysis for Worn Off Metallic Elements
14
作者 王文清 万耀青 +1 位作者 马璐 万晓东 《Journal of Beijing Institute of Technology》 EI CAS 1994年第2期183-192,共10页
In the fault prediction of mechanical equipments through spectromectric oil analysis for worn off debris, a method for the determination of the limiting value of wear is proposed and discussed. In order to diagnose th... In the fault prediction of mechanical equipments through spectromectric oil analysis for worn off debris, a method for the determination of the limiting value of wear is proposed and discussed. In order to diagnose the impending failure and to predict the fault modes and locate the fault spots, a comprehensive approach is studied and outlined on the basis of methods of discriminative analysis and fuzzy logic. A fault diagnosis expert system OAFDS developed by the authors for the nonitoring of working conditions of the ND5 locomotive diesel engine Nd5 is briefly introduced. 展开更多
关键词 expert systems fault diagnosis wears lubrication/condition monitoring
在线阅读 下载PDF
Intelligent Examination Monitoring and Maintenance for the Safety of Operation of Flexible Manufacturing Systems
15
作者 张建民 李世健 郝娟 《Journal of Beijing Institute of Technology》 EI CAS 2001年第2期163-168,共6页
Based on the system of electric power supply for flexible manufacturing systems (FMS), a study has been carried out on the intelligent safety examination, monitoring and maintenance of its running environment. On the ... Based on the system of electric power supply for flexible manufacturing systems (FMS), a study has been carried out on the intelligent safety examination, monitoring and maintenance of its running environment. On the basis of the specific feature of the power supply network of an FMS, real time monitoring system of the power supply network and the fault diagnostic expert system for the power equipment have been designed. This system can diagnose not only definite fault phenomena, but also fuzzy, uncertain fault phenomena as well. Fault diagnostic knowledge base for the power equipment has been founded hierarchy architecture model and the method of fault tree analysis. Feasibility of this system has been proved by computer simulation. 展开更多
关键词 flexible manufacturing systems power supply network power equipment real time monitoring fault diagnosis expert system
在线阅读 下载PDF
DIAGNOSIS OF DAMPING FAULTS IN HELICOPTER ROTOR HUB BASED ON FUSELAGE VIBRATIONS
16
作者 高亚东 张曾錩 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第2期102-107,共6页
Damping faults in a helicopter rotor hub are diagnosed by using vibration signals from the fuselage. Faults include the defective lag damper and raspings in its flap and feathering hinges. Experiments on the diagnosis... Damping faults in a helicopter rotor hub are diagnosed by using vibration signals from the fuselage. Faults include the defective lag damper and raspings in its flap and feathering hinges. Experiments on the diagnosis of three faults are carried out on a rotor test rig with the chosen fault each time. Fuselage vibration signals from specified locations are measured and analyzed by the fast Fourier transform in the frequency domain. It is demonstrated that fuselage vibration frequency spectra induced by three faults are different from each other. The probabilistic neural network (PNN) is adopted to detect three faults. Results show that it is feasible to diagnose three faults only using fuselage vibration data. 展开更多
关键词 helicopter rotor fault diagnosis DAMPING frequency domain analysis probabilistic neural network(PNN)
在线阅读 下载PDF
Application of Improved Genetic Algorithm in Network Fault Diagnosis Expert System 被引量:4
17
作者 苏利敏 侯朝桢 +1 位作者 戴忠健 张雅静 《Journal of Beijing Institute of Technology》 EI CAS 2003年第3期225-229,共5页
Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is ... Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is proposed. The algorithm applies operators such as selection, crossover and mutation to evolve an initial population of diagnostic rules. Especially, a self adaptive method is put forward to regulate the crossover rate and mutation rate. In the end, a knowledge acquisition problem of a simple network fault diagnostic system is simulated, the results of simulation show that the improved approach can solve the problem of convergence better. 展开更多
关键词 expert system knowledge acquisition fault diagnosis genetic algorithm
在线阅读 下载PDF
Fault Diagnosis Approach of Local Ventilation System in Coal Mines Based on Multidisciplinary Technology 被引量:18
18
作者 GONG Xiao-yan XUE He +1 位作者 TAO Xin-li HU Ning 《Journal of China University of Mining and Technology》 EI 2006年第3期317-320,共4页
In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, ... In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, genetic algorithm (GA), and intelligent decision support system (IDSS) was used to establish and develop a fault diagnosis system of local ventilation in coal mine. Fault tree model was established and its reliability analysis was performed. The algorithms and software of key fault symptom and fault diagnosis rule acquiring were also analyzed and developed. Finally, a prototype system was developed and demonstrated by a mine instance. The research results indicate that the proposed approach in this paper can accurately and quickly find the fault reason in a local ventilation system of coal mines and can reduce difficulty of the fault diagnosis of the local ventilation system, which is significant to decrease gas exploding accidents in coal mines. 展开更多
关键词 fault diagnosis local ventilation rough set theory genetic algorithm IDSS
在线阅读 下载PDF
Fault diagnosis of a mine hoist using PCA and SVM techniques 被引量:21
19
作者 CHANG Yan-wei WANG Yao-cai +1 位作者 LIU Tao WANG Zhi-jie 《Journal of China University of Mining and Technology》 EI 2008年第3期327-331,共5页
A new method based on principal component analysis (PCA) and support vector machines (SVMs) is proposed for fault diagnosis of mine hoists. PCA is used to extract the principal features associated with the gearbox. Th... A new method based on principal component analysis (PCA) and support vector machines (SVMs) is proposed for fault diagnosis of mine hoists. PCA is used to extract the principal features associated with the gearbox. Then, with the irrelevant gearbox variables removed, the remaining gearbox, the hydraulic system and the wire rope parameters were used as input to a multi-class SVM. The SVM is first trained by using the one class-based multi-class optimization algorithm and it is then applied to fault identification. Comparison of various methods showed the PCA-SVM method successfully removed redundancy to solve the dimensionality curse. These results show that the algorithm using the RBF kernel function for the SVM had the best classification properties. 展开更多
关键词 fault diagnosis principal component analysis support vector machines mine hoist
在线阅读 下载PDF
Optimization of a dynamic uncertain causality graph for fault diagnosis in nuclear power plant 被引量:2
20
作者 Yue Zhao Francesco Di Maio +3 位作者 Enrico Zio Qin Zhang Chun-Ling Dong Jin-Ying Zhang 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第3期59-67,共9页
Fault diagnostics is important for safe operation of nuclear power plants(NPPs). In recent years, data-driven approaches have been proposed and implemented to tackle the problem, e.g., neural networks, fuzzy and neuro... Fault diagnostics is important for safe operation of nuclear power plants(NPPs). In recent years, data-driven approaches have been proposed and implemented to tackle the problem, e.g., neural networks, fuzzy and neurofuzzy approaches, support vector machine, K-nearest neighbor classifiers and inference methodologies. Among these methods, dynamic uncertain causality graph(DUCG)has been proved effective in many practical cases. However, the causal graph construction behind the DUCG is complicate and, in many cases, results redundant on the symptoms needed to correctly classify the fault. In this paper, we propose a method to simplify causal graph construction in an automatic way. The method consists in transforming the expert knowledge-based DCUG into a fuzzy decision tree(FDT) by extracting from the DUCG a fuzzy rule base that resumes the used symptoms at the basis of the FDT. Genetic algorithm(GA) is, then, used for the optimization of the FDT, by performing a wrapper search around the FDT: the set of symptoms selected during the iterative search are taken as the best set of symptoms for the diagnosis of the faults that can occur in the system. The effectiveness of the approach is shown with respect to a DUCG model initially built to diagnose 23 faults originally using 262 symptoms of Unit-1 in the Ningde NPP of the China Guangdong Nuclear Power Corporation. The results show that the FDT, with GA-optimized symptoms and diagnosis strategy, can drive the construction of DUCG and lower the computational burden without loss of accuracy in diagnosis. 展开更多
关键词 DYNAMIC UNCERTAIN CAUSALITY GRAPH fault diagnosis Classification Fuzzy DECISION tree GENETIC algorithm Nuclear power plant
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部