To seek for lower-dimensional chaotic systems that have complex topological attractor structure with simple algebraic system structure, a new chaotic system of three-dimensional autonomous ordinary differential equati...To seek for lower-dimensional chaotic systems that have complex topological attractor structure with simple algebraic system structure, a new chaotic system of three-dimensional autonomous ordinary differential equations is presented. The new system has simple algebraic structure, and can display a 2-scroll attractor with complex topological structure, which is different from the Lorenz's, Chen's and Lu¨'s attractors. By introducing a linear state feedback controller, the system can be controlled to generate a hyperchaotic attractor. The novel chaotic attractor, hyperchaotic attractor and dynamical behaviors of corresponding systems are further investigated by employing Lyapunov exponent spectrum, bifurcation diagram, Poincar′e mapping and phase portrait, etc., and then verified by simulating an experimental circuit.展开更多
The rectifier filter circuit is widely applied.However,it is difficult to gain a global solution for the optimization design.4-D visual analysis and design optimization of the single-phase uncontrolled bridge rectifie...The rectifier filter circuit is widely applied.However,it is difficult to gain a global solution for the optimization design.4-D visual analysis and design optimization of the single-phase uncontrolled bridge rectifier with an LC filter are presented in this paper.展开更多
To design a hyperchaotic generator and apply chaos into secure communication, a linear unidirectional coupling control is applied to two identical simplified Lorenz systems. The dynamical evolution process of the coup...To design a hyperchaotic generator and apply chaos into secure communication, a linear unidirectional coupling control is applied to two identical simplified Lorenz systems. The dynamical evolution process of the coupled system is investigated with variations of the system parameter and coupling coefficients. Particularly, the influence of coupling strength on dynamics of the coupled system is analyzed in detail. The range of the coupling strength in which the coupled system can generate hyperchaos or realize synchronization is determined, including phase portraits, Lyapunov exponents, and Poincare section. And the critical value of the system parameter between hyperchaos and synchronization is also found with fixed coupled strength. In addition, abundant dynamical behaviors such as four-wing hyperchaotic, two-wing chaotic, single-wing coexisting attractors and periodic orbits are observed and chaos synchronization error curves are also drawn by varying system parameter c. Numerical simulations are implemented to verify the results of these investigations.展开更多
基金supported by the National Natural Science Foundation of China (60971090)the Natural Science Foundation of Jiangsu Province (BK 2009105)
文摘To seek for lower-dimensional chaotic systems that have complex topological attractor structure with simple algebraic system structure, a new chaotic system of three-dimensional autonomous ordinary differential equations is presented. The new system has simple algebraic structure, and can display a 2-scroll attractor with complex topological structure, which is different from the Lorenz's, Chen's and Lu¨'s attractors. By introducing a linear state feedback controller, the system can be controlled to generate a hyperchaotic attractor. The novel chaotic attractor, hyperchaotic attractor and dynamical behaviors of corresponding systems are further investigated by employing Lyapunov exponent spectrum, bifurcation diagram, Poincar′e mapping and phase portrait, etc., and then verified by simulating an experimental circuit.
文摘The rectifier filter circuit is widely applied.However,it is difficult to gain a global solution for the optimization design.4-D visual analysis and design optimization of the single-phase uncontrolled bridge rectifier with an LC filter are presented in this paper.
基金Projects(61073187,61161006) supported by the National Nature Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘To design a hyperchaotic generator and apply chaos into secure communication, a linear unidirectional coupling control is applied to two identical simplified Lorenz systems. The dynamical evolution process of the coupled system is investigated with variations of the system parameter and coupling coefficients. Particularly, the influence of coupling strength on dynamics of the coupled system is analyzed in detail. The range of the coupling strength in which the coupled system can generate hyperchaos or realize synchronization is determined, including phase portraits, Lyapunov exponents, and Poincare section. And the critical value of the system parameter between hyperchaos and synchronization is also found with fixed coupled strength. In addition, abundant dynamical behaviors such as four-wing hyperchaotic, two-wing chaotic, single-wing coexisting attractors and periodic orbits are observed and chaos synchronization error curves are also drawn by varying system parameter c. Numerical simulations are implemented to verify the results of these investigations.