The lower Ordovician mid-assemblage Formations in the central Ordos Basin of China host prolific gas resources,and most hydrocarbon reserves are stored in naturally-fractured reservoirs.Thus,fracture pathway systems m...The lower Ordovician mid-assemblage Formations in the central Ordos Basin of China host prolific gas resources,and most hydrocarbon reserves are stored in naturally-fractured reservoirs.Thus,fracture pathway systems may have a significant impact on reservoir performance.This article focuses on the core-and laboratory-based characterization of fractures.Through the developmental degrees,extended scale,output state and filling characteristics of various types of fractures,the results show that there are three distinct fracture types:1)nearly vertical fractures,2)oblique fractures,and 3)horizontal fractures.Based on a systematic study of the characterization of reservoir space,the main geologic setting of natural gas accumulation and the regional tectonic background,type 1 is mainly driven by the tectonic formation mechanism,and type 3 and parts of low-angle fractures in type 2 are induced by the diagenetic formation mechanism.While recovered paleopressure for methane-rich aqueous inclusions trapped in fracture-filling cement indicates that the fracture opening and growth are consistent with gas maturation and charge and such high-angle fractures in type 2 are caused by the compound formation mechanism.The fractures to hydrocarbon accumulation may play a more significant role in improving the quality of reservoir porosity.Furthermore,connected fractures,dissolved pores and cavities together constitute the three-dimensional pore-cave-fracture network pathway systems,with faults serving as the dominant charge pathways of highly pressurized gas in the study area.Our results demonstrate that protracted growth of a pervasive fracture system is not only the consequence of various formation mechanisms but also intrinsic to quasi-continuous accumulation reservoirs.展开更多
Based on analysisof karst fracture-vuggy filling mineralogy and geochemical fluorite in hercynian, this paper make further research about formation and significance of fluorite in central uplift of Tarim Basin. It is ...Based on analysisof karst fracture-vuggy filling mineralogy and geochemical fluorite in hercynian, this paper make further research about formation and significance of fluorite in central uplift of Tarim Basin. It is point out that the development of hercynian fracture-vuggy and filling succession of fracture-cave mineral was under the background of the mingling of low-temperature magma hydrotherm and the brine of upper strata. There are overlap or associate relations between generate of fluorite and buried dissolution or oil-gas migration. It was volume decreased 26.4% after calcite metasomatic by fluorite, this reaction made fluorite engender plentiful intergranular space. It’s created appreciable reservoir space. At same time, hydrotherm carried by fluorite generating could erode adjacent rock though fracture or fissure, forming irregular fracture-cave system, and also accompanied with hydrocarbon migration. The time of hydrocarbon migration and accumulation happened in late hercynian-indosinian is inosculates with the sedimentation time such as fluorite and several hydrothermal mineral.展开更多
Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetime...Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates.展开更多
Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristic...Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristics of deep strata in Palaeogene in the northern steep slope zone of the Bonan sag, China. The formation mechanisms of high quality reservoirs in deep strata were discussed according to evolution characteristics of paleopressures and paleofluids in geological period. The deep reservoirs have poor physical properties and mainly develop extra-low porosity, extra-low and ultra-low permeability reservoirs. Reservoir spaces mainly consist of secondary pores and overpressure fractures. Early overpressure, early hydrocarbon filling and dissolution by early organic acids are the major formation mechanisms of high quality reservoirs. The conglomerate in inner fan which had a poor primary physical property mainly experienced strong compaction and calcareous matrix recrystallization. The physical properties of the inner fan were poor with weak dissolution because of poor mobility of fluid. The reservoirs mainly are type IV reservoirs and the distribution extends with the burial depth. The braided channel reservoirs in the middle fan had relative good primary physical properties and strong ability to resist compaction which favored the preservation of primary pores. Large amounts of the secondary porosities were created due to dissolution by early organic acids. A series of micro-fractures generated by early overpressures would be important migration pathways for hydrocarbon and organic acids. Furthermore, early overpressures had retarded maturation of organic matters and organic acids which had flowed into reservoirs already and could keep in acid environment for a long time. This process would contribute significantly to reinforcing the dissolution and enhancing the reservoir quality. The braided channel reservoirs were charged with high oil saturation preferentially by early hydrocarbon filling which could inhibit later cementation. Therefore, the braided channel reservoirs develop a great quantity of reservoir spaces with type I, type II and type III reservoirs in the majority in the deep strata. With the burial depth, distributions of type I and type II reservoirs are narrowed and distribution of type III reservoirs decreases first and then extends. The reservoirs both in outer fan and in interdistributary of the middle fan have extremely poor physical properties because of extensive carbonate cementation. The type of the reservoirs mainly is type IV.展开更多
Atherosclerosis or fibrosis and cirrhosis undergo chronic inflammation associated with the adhesion between neutrophils and endothelial cells(ECs)that is mediated by their respective cellular adhesive molecules on sti...Atherosclerosis or fibrosis and cirrhosis undergo chronic inflammation associated with the adhesion between neutrophils and endothelial cells(ECs)that is mediated by their respective cellular adhesive molecules on stiffened blood vessel wall or extracellular matrix(ECM)under shear flow[1-3].However,the mechanical dependence of calcium flux and trail formation in neutrophils remains unclear yet in these processes.First,the effect of substrate stiffness through ECs on neutrophil calcium spike was quantified when the individual neutrophils adhered to EC monolayer pre-placed onto stiffness-varied polyacrylamide(PA)substrate(5 or 34.88 kPa)or glass surface.Our data indicated that E-/P-selectins and ICAM-1s on HUVECs and b2-integrins,PSGL-1s,and CD44s on neutrophils were all involved in mediating neutrophil calcium spike in a stiffness-dependent manner,in which the increase of substrate stiffness enhanced the calcium intensity and spike number.Such stiffness-dependent calcium response is associated with selectin-induced b2-integrin activation through Syk/Src signaling pathway and the F-actin/myosin II function.Moreover,tension-activated calcium ion channels displayed critical roles in initiating stiffness-dependent calcium spike [4].Second,the trail formation of neutrophils to ECs monolayer pre-placed onto the same PA substrate were also tested under shear flow.Live fluorescence imaging showed that neutrophils are able to form long membrane tethers during migration and subsequently leave behind membranous long-lasting trails under shear,which are enriched in LFA-1,Mac-1,and CD44.Moreover,the formation of the trails was inhibited by blocking LFA-1s and Mac-1s,suggesting an important role forβ2-integrins in the trial formation.The recruitment of monocytes was inhibited when pre-blocking ICAM-1s on flowing monocytes,indicating that the neutrophil’s trails employβ2-integrin-ICAM-1 binding to recruit the monocytes.Intriguingly,both the length and the area of the trails increase with increasing substrate stiffness,resulting in the enhanced monocyte recruitment.Inhibition of actin binding protein Arp2/3 impairs the trail formation and dramatically decreases the neutrophil-dependent monocyte recruitment.These data provide an insight into understanding how stiffening of vascular wall could regulate the calcium flux of adhered neutrophils and thus the immune responses in atherosclerosis.They also imply that local mechanical microenvironment is remodeled with the migration of neutrophils,leaving the trails presented to induce and regulate monocyte recruitment.All the results are meaningful in elucidating the occurrence and development of atherosclerosis or fibrosis from the viewpoint of mechanotransduction and also for the potential intervention of cardiovascular disease progress.展开更多
Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was ...Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was usually observed near the excavation boundaries. The formation mechanism of the “11·28” rockburst, which was a typical rockburst and occurred in a drainage tunnel under a deep burial depth, high in-situ stress state and complex geological conditions, has been difficult to explain. Realistic failure process analysis(RFPA3D) software was adopted to numerically simulate the whole failure process of the surrounding rock mass around the tunnel subjected to excavation. The spatial distribution of acoustic emission derived from numerical simulation contributed to explaining the mechanical responses of the process. Analyses of the stress, safety reserve coefficient and damage degree were performed to reveal the effect of faults on the formation of rockbursts in the deep tunnel. The existence of faults results in the formation of stress anomaly areas between the tunnel and the fault. The surrounding rock mass failure propagates toward the fault from the initial failure, to different degrees. The relative positions and angles of faults play significant roles in the extent and development of surrounding rock mass failure, respectively. The increase in the lateral stress coefficient leads to the aggravation of the surrounding rock mass damage, especially in the roof and floor of the tunnel. Moreover, as the rock strength-stress ratio increases, the failure mode of the near-fault tunnel gradually changes from the stress-controlled type to the compound-controlled type. These findings were consistent with the microseismic monitoring results and field observations, which was helpful to understand the mechanical behavior of tunnel excavation affected by faults. The achievements of this study can provide some references for analysis of the failure mechanisms of similar deep tunnels.展开更多
Dioxins, which are of the most toxic materials on the earth, are principal emitted from waste incineration process. The molecular structures, toxicity parameters, such as toxicity equivalency factor, tolerable daily i...Dioxins, which are of the most toxic materials on the earth, are principal emitted from waste incineration process. The molecular structures, toxicity parameters, such as toxicity equivalency factor, tolerable daily intake and physic-chemical properties of dioxins are briefly summarized. Three formation mechanisms of dioxins in waste incineration process, namely as de novo synthesis, mechanisms involving small organic molecular as precursors and homogenous gas phase reaction mechanism are alto reviewed. The influencing factors for dioxins formation during waste incineration process are also discussed. Three major methods for reducing dioxins emission from waste incineration process are discussed based upon the formation mechanisms and influencing factors. A new waste incineration process with low dioxins emission and low hydrogen chloride corrosion has been proposed based on multi- stage unit operation principal according to formation mechanisms of dioxins and potential production location in waste incinerators.展开更多
Based on Fabry model and finite-different time-domain(FDTD) method, the plasmonic structure composed of a metal-insulator-metal(MIM) bus waveguide and a side-coupled resonator was investigated. It is found that the tr...Based on Fabry model and finite-different time-domain(FDTD) method, the plasmonic structure composed of a metal-insulator-metal(MIM) bus waveguide and a side-coupled resonator was investigated. It is found that the transmission features can be regulated by the cavity width and coupling distance. Electromagnetically induced transparency(EIT)-like transmission can be excited by adding an identical resonator on the pre-existing structure. Combining the foregoing theoretical analysis with coupled mode theory(CMT), the formation process of the EIT-like transmission was detailedly analyzed. EIT-like transmission can also be excited in plasmonic structure with two detuned resonators. By altering the structure parameters, the transparency window can be purposefully modulated. With the merits of compact structure and simplicity in fabrication, the proposed structures may have a broad prospect of applications in highly integrated optical circuits.展开更多
The purpose of this study was to examine the sedimentary facies characteristics of lower Cambrian Niutitang Formation(∈1n)in South China,to reveal the mechanism of organic matter enrichment,and to guide exploration o...The purpose of this study was to examine the sedimentary facies characteristics of lower Cambrian Niutitang Formation(∈1n)in South China,to reveal the mechanism of organic matter enrichment,and to guide exploration of shale gas.Macro investigation and experimental analyses were used to assess the lithology in detail,total organic matter mass fraction w(TOC),mineral composition,and trace element characteristics of∈1n.The influencing factors of organic matter enrichment were discussed extensively,and a sedimentary facies mode was suggested.In the early stage of∈1n,the locations of Well E’yangye 1,Well Ciye 1,Well Changye 1,and Well Anye 1 respectively develop,platform inner sag,outer shelf,Jiangnan slope belt,and South China detention basin.In the late stage of∈1n,the sedimentary facies evolve with decreasing sea level.The study area presents a complete three-step basin in the Early Cambrian.In the early stage of∈1n,the first step is the Yangtze carbonate platform,the second step is the outer shelf and slope,and the third step is the deep-water basin.From the Yangtze carbonate platform to the deep-water basin,w(TOC)and the mass fraction of quartz gradually increase,the mass fraction of carbonate mineral decreases,and the mass fraction of clay mineral is higher in the second step.The sea level fluctuation results in a higher w(TOC)vertically in the lower∈1n shale,and the paleogeographic(provenance)conditions lead to better horizontal development of organic matter in the outer shelf,slope and detention basin.Trace elements are abundant in the lower∈1n,and w(TOC)is correlated positively with many trace elements.In the outer shelf,slope,and adjacent areas,hydrothermal activity and upwelling current bring nutrient-rich material and promote organic matter enrichment under a strong reducing condition.Deep-shelf,slope and deep-water basin are the best facies for the formation and preservation of organic matter,especially deep-water basin facies.It remains necessary to strengthen the exploration of shale gas in the deep-water basin of∈1n in central Hunan,China.展开更多
To compare the formation mechanisms of He and Ar atmospheric pressure plasma jets(APPJs),an intensified charge-coupled device(ICCD)are utilized to observe the dynamic process of APPJ.The experimental results show that...To compare the formation mechanisms of He and Ar atmospheric pressure plasma jets(APPJs),an intensified charge-coupled device(ICCD)are utilized to observe the dynamic process of APPJ.The experimental results show that,He APPJ is first ignited,which is independent of the dielectric barrier discharge(DBD)between the two wrapped electrodes when the high voltage placed at the downstream.The intensity and APPJ length under positive discharge pulses are bigger than that under negative discharge pulses due to the space charge effect.The He APPJ is formed by the DBD development when the high-voltage electrode placed at the upstream side of tube.However,the plasma plume in Ar APPJ is formed by the propagation of DBD whatever the high-voltage electrode is arranged on upstream or downstream side of ground electrode.The difference in formation mechanism between He and Ar APPJs is mainly caused by the gas properties.Moreover,during the discharges,Ar tends to lead to thermal instability and electron Maxwellian instability.展开更多
Based on the basic geological features of Yixingzhai gold deposit, the geological features, classification and relation to mineralization of breccia pipes were discussed by surveying the xenoliths and breccia's mi...Based on the basic geological features of Yixingzhai gold deposit, the geological features, classification and relation to mineralization of breccia pipes were discussed by surveying the xenoliths and breccia's mineral composition, structure and construction, typical mineralization alteration phenomenon on field and microscopic anatomy in breccia pipes. And the ore-controlling mechanism and the formation mechanism of the blasting breccia pipes were investigated. The main conclusion shows that Hewan and Nanmenshan breccia pipes nearby the NW-striking deep fault are shaped earlier, belonging to the acidic siliceous ingredient production of ultra-hypabyssal magmatic in the late magma stage; Tietangdong and Nanmenshan breccia pipes that are shaped latter are the ultra-hypabyssal auriferous fluid production composed mainly of the skarn in the hydrothermal stage after the magma period. Both root in the unified deep magmatic chamber, belonging to differentiation derivatives at different stages in the deep magmatic chamber.展开更多
By using LS-DYNA simulation software,the influences of some structure parameters,such as top cone angle,wall thickness,liner height and height ratio of top cone,of double-angle liner on the jet formation were studied ...By using LS-DYNA simulation software,the influences of some structure parameters,such as top cone angle,wall thickness,liner height and height ratio of top cone,of double-angle liner on the jet formation were studied respectively.Their influences on jet tip velocity,tail velocity and penetration depth were revealed.The simulation results show that the formation is better if the top cone angle is selected as 28°,the wall is 2.6mm,the liner height is 140mm,and the height ratio of top cone is 60%.In large stand-off distance,the jet has a higher tip velocity,and the tip does not break.With the stand-off distance of 8 times of the charge diameter,the experiment penetrating steel target was carried out.The experiment and simulation results are in good agreement.展开更多
基金Project (2011ZX05007-004) supported by the National Sciences and Technologies,ChinaProject (41502132) supported by the National Natural Science Foundation of China
文摘The lower Ordovician mid-assemblage Formations in the central Ordos Basin of China host prolific gas resources,and most hydrocarbon reserves are stored in naturally-fractured reservoirs.Thus,fracture pathway systems may have a significant impact on reservoir performance.This article focuses on the core-and laboratory-based characterization of fractures.Through the developmental degrees,extended scale,output state and filling characteristics of various types of fractures,the results show that there are three distinct fracture types:1)nearly vertical fractures,2)oblique fractures,and 3)horizontal fractures.Based on a systematic study of the characterization of reservoir space,the main geologic setting of natural gas accumulation and the regional tectonic background,type 1 is mainly driven by the tectonic formation mechanism,and type 3 and parts of low-angle fractures in type 2 are induced by the diagenetic formation mechanism.While recovered paleopressure for methane-rich aqueous inclusions trapped in fracture-filling cement indicates that the fracture opening and growth are consistent with gas maturation and charge and such high-angle fractures in type 2 are caused by the compound formation mechanism.The fractures to hydrocarbon accumulation may play a more significant role in improving the quality of reservoir porosity.Furthermore,connected fractures,dissolved pores and cavities together constitute the three-dimensional pore-cave-fracture network pathway systems,with faults serving as the dominant charge pathways of highly pressurized gas in the study area.Our results demonstrate that protracted growth of a pervasive fracture system is not only the consequence of various formation mechanisms but also intrinsic to quasi-continuous accumulation reservoirs.
文摘Based on analysisof karst fracture-vuggy filling mineralogy and geochemical fluorite in hercynian, this paper make further research about formation and significance of fluorite in central uplift of Tarim Basin. It is point out that the development of hercynian fracture-vuggy and filling succession of fracture-cave mineral was under the background of the mingling of low-temperature magma hydrotherm and the brine of upper strata. There are overlap or associate relations between generate of fluorite and buried dissolution or oil-gas migration. It was volume decreased 26.4% after calcite metasomatic by fluorite, this reaction made fluorite engender plentiful intergranular space. It’s created appreciable reservoir space. At same time, hydrotherm carried by fluorite generating could erode adjacent rock though fracture or fissure, forming irregular fracture-cave system, and also accompanied with hydrocarbon migration. The time of hydrocarbon migration and accumulation happened in late hercynian-indosinian is inosculates with the sedimentation time such as fluorite and several hydrothermal mineral.
基金supported by the National Natural Science Foundation of China(Grant No.40102005 and No.49725205).
文摘Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates.
基金Project(41102058)supported by the National Natural Science Foundation of ChinaProject(2011ZX05006-003)supported by National Oil&Gas Major Project of China+1 种基金Project(U1262203)supported by Key Program for National Natural Science Foundation of ChinaProject(LW140101A)supported by Excellent Doctoral Dissertation Program of China University of Petroleum
文摘Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristics of deep strata in Palaeogene in the northern steep slope zone of the Bonan sag, China. The formation mechanisms of high quality reservoirs in deep strata were discussed according to evolution characteristics of paleopressures and paleofluids in geological period. The deep reservoirs have poor physical properties and mainly develop extra-low porosity, extra-low and ultra-low permeability reservoirs. Reservoir spaces mainly consist of secondary pores and overpressure fractures. Early overpressure, early hydrocarbon filling and dissolution by early organic acids are the major formation mechanisms of high quality reservoirs. The conglomerate in inner fan which had a poor primary physical property mainly experienced strong compaction and calcareous matrix recrystallization. The physical properties of the inner fan were poor with weak dissolution because of poor mobility of fluid. The reservoirs mainly are type IV reservoirs and the distribution extends with the burial depth. The braided channel reservoirs in the middle fan had relative good primary physical properties and strong ability to resist compaction which favored the preservation of primary pores. Large amounts of the secondary porosities were created due to dissolution by early organic acids. A series of micro-fractures generated by early overpressures would be important migration pathways for hydrocarbon and organic acids. Furthermore, early overpressures had retarded maturation of organic matters and organic acids which had flowed into reservoirs already and could keep in acid environment for a long time. This process would contribute significantly to reinforcing the dissolution and enhancing the reservoir quality. The braided channel reservoirs were charged with high oil saturation preferentially by early hydrocarbon filling which could inhibit later cementation. Therefore, the braided channel reservoirs develop a great quantity of reservoir spaces with type I, type II and type III reservoirs in the majority in the deep strata. With the burial depth, distributions of type I and type II reservoirs are narrowed and distribution of type III reservoirs decreases first and then extends. The reservoirs both in outer fan and in interdistributary of the middle fan have extremely poor physical properties because of extensive carbonate cementation. The type of the reservoirs mainly is type IV.
基金supported by National Natural Science Foundation of China Grant( 31627804,91642203, 11772345,91539119)Chinese Academy of Sciences Strategic Priority Research Program ( XDB22040101)Frontier Science Key Project( QYZDJ-SSWJSC018)
文摘Atherosclerosis or fibrosis and cirrhosis undergo chronic inflammation associated with the adhesion between neutrophils and endothelial cells(ECs)that is mediated by their respective cellular adhesive molecules on stiffened blood vessel wall or extracellular matrix(ECM)under shear flow[1-3].However,the mechanical dependence of calcium flux and trail formation in neutrophils remains unclear yet in these processes.First,the effect of substrate stiffness through ECs on neutrophil calcium spike was quantified when the individual neutrophils adhered to EC monolayer pre-placed onto stiffness-varied polyacrylamide(PA)substrate(5 or 34.88 kPa)or glass surface.Our data indicated that E-/P-selectins and ICAM-1s on HUVECs and b2-integrins,PSGL-1s,and CD44s on neutrophils were all involved in mediating neutrophil calcium spike in a stiffness-dependent manner,in which the increase of substrate stiffness enhanced the calcium intensity and spike number.Such stiffness-dependent calcium response is associated with selectin-induced b2-integrin activation through Syk/Src signaling pathway and the F-actin/myosin II function.Moreover,tension-activated calcium ion channels displayed critical roles in initiating stiffness-dependent calcium spike [4].Second,the trail formation of neutrophils to ECs monolayer pre-placed onto the same PA substrate were also tested under shear flow.Live fluorescence imaging showed that neutrophils are able to form long membrane tethers during migration and subsequently leave behind membranous long-lasting trails under shear,which are enriched in LFA-1,Mac-1,and CD44.Moreover,the formation of the trails was inhibited by blocking LFA-1s and Mac-1s,suggesting an important role forβ2-integrins in the trial formation.The recruitment of monocytes was inhibited when pre-blocking ICAM-1s on flowing monocytes,indicating that the neutrophil’s trails employβ2-integrin-ICAM-1 binding to recruit the monocytes.Intriguingly,both the length and the area of the trails increase with increasing substrate stiffness,resulting in the enhanced monocyte recruitment.Inhibition of actin binding protein Arp2/3 impairs the trail formation and dramatically decreases the neutrophil-dependent monocyte recruitment.These data provide an insight into understanding how stiffening of vascular wall could regulate the calcium flux of adhered neutrophils and thus the immune responses in atherosclerosis.They also imply that local mechanical microenvironment is remodeled with the migration of neutrophils,leaving the trails presented to induce and regulate monocyte recruitment.All the results are meaningful in elucidating the occurrence and development of atherosclerosis or fibrosis from the viewpoint of mechanotransduction and also for the potential intervention of cardiovascular disease progress.
基金Project(42177143) supported by the National Natural Science Foundation of ChinaProject(2020JDJQ0011) supported by the Science Foundation for Distinguished Young Scholars of Sichuan Province,China。
文摘Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was usually observed near the excavation boundaries. The formation mechanism of the “11·28” rockburst, which was a typical rockburst and occurred in a drainage tunnel under a deep burial depth, high in-situ stress state and complex geological conditions, has been difficult to explain. Realistic failure process analysis(RFPA3D) software was adopted to numerically simulate the whole failure process of the surrounding rock mass around the tunnel subjected to excavation. The spatial distribution of acoustic emission derived from numerical simulation contributed to explaining the mechanical responses of the process. Analyses of the stress, safety reserve coefficient and damage degree were performed to reveal the effect of faults on the formation of rockbursts in the deep tunnel. The existence of faults results in the formation of stress anomaly areas between the tunnel and the fault. The surrounding rock mass failure propagates toward the fault from the initial failure, to different degrees. The relative positions and angles of faults play significant roles in the extent and development of surrounding rock mass failure, respectively. The increase in the lateral stress coefficient leads to the aggravation of the surrounding rock mass damage, especially in the roof and floor of the tunnel. Moreover, as the rock strength-stress ratio increases, the failure mode of the near-fault tunnel gradually changes from the stress-controlled type to the compound-controlled type. These findings were consistent with the microseismic monitoring results and field observations, which was helpful to understand the mechanical behavior of tunnel excavation affected by faults. The achievements of this study can provide some references for analysis of the failure mechanisms of similar deep tunnels.
文摘Dioxins, which are of the most toxic materials on the earth, are principal emitted from waste incineration process. The molecular structures, toxicity parameters, such as toxicity equivalency factor, tolerable daily intake and physic-chemical properties of dioxins are briefly summarized. Three formation mechanisms of dioxins in waste incineration process, namely as de novo synthesis, mechanisms involving small organic molecular as precursors and homogenous gas phase reaction mechanism are alto reviewed. The influencing factors for dioxins formation during waste incineration process are also discussed. Three major methods for reducing dioxins emission from waste incineration process are discussed based upon the formation mechanisms and influencing factors. A new waste incineration process with low dioxins emission and low hydrogen chloride corrosion has been proposed based on multi- stage unit operation principal according to formation mechanisms of dioxins and potential production location in waste incinerators.
基金Project(61275174)supported by the National Natural Science Foundations of ChinaProject(20100162110068)supported by the Doctoral Program of Higher Education of China
文摘Based on Fabry model and finite-different time-domain(FDTD) method, the plasmonic structure composed of a metal-insulator-metal(MIM) bus waveguide and a side-coupled resonator was investigated. It is found that the transmission features can be regulated by the cavity width and coupling distance. Electromagnetically induced transparency(EIT)-like transmission can be excited by adding an identical resonator on the pre-existing structure. Combining the foregoing theoretical analysis with coupled mode theory(CMT), the formation process of the EIT-like transmission was detailedly analyzed. EIT-like transmission can also be excited in plasmonic structure with two detuned resonators. By altering the structure parameters, the transparency window can be purposefully modulated. With the merits of compact structure and simplicity in fabrication, the proposed structures may have a broad prospect of applications in highly integrated optical circuits.
基金Project(2017GK2233)supported by the Science and Technology Innovation Program of Hunan Provine,ChinaProject(2017JJ1034)supported by the Natural Science Foundation of Hunan Province,China。
文摘The purpose of this study was to examine the sedimentary facies characteristics of lower Cambrian Niutitang Formation(∈1n)in South China,to reveal the mechanism of organic matter enrichment,and to guide exploration of shale gas.Macro investigation and experimental analyses were used to assess the lithology in detail,total organic matter mass fraction w(TOC),mineral composition,and trace element characteristics of∈1n.The influencing factors of organic matter enrichment were discussed extensively,and a sedimentary facies mode was suggested.In the early stage of∈1n,the locations of Well E’yangye 1,Well Ciye 1,Well Changye 1,and Well Anye 1 respectively develop,platform inner sag,outer shelf,Jiangnan slope belt,and South China detention basin.In the late stage of∈1n,the sedimentary facies evolve with decreasing sea level.The study area presents a complete three-step basin in the Early Cambrian.In the early stage of∈1n,the first step is the Yangtze carbonate platform,the second step is the outer shelf and slope,and the third step is the deep-water basin.From the Yangtze carbonate platform to the deep-water basin,w(TOC)and the mass fraction of quartz gradually increase,the mass fraction of carbonate mineral decreases,and the mass fraction of clay mineral is higher in the second step.The sea level fluctuation results in a higher w(TOC)vertically in the lower∈1n shale,and the paleogeographic(provenance)conditions lead to better horizontal development of organic matter in the outer shelf,slope and detention basin.Trace elements are abundant in the lower∈1n,and w(TOC)is correlated positively with many trace elements.In the outer shelf,slope,and adjacent areas,hydrothermal activity and upwelling current bring nutrient-rich material and promote organic matter enrichment under a strong reducing condition.Deep-shelf,slope and deep-water basin are the best facies for the formation and preservation of organic matter,especially deep-water basin facies.It remains necessary to strengthen the exploration of shale gas in the deep-water basin of∈1n in central Hunan,China.
基金Project supported by China National Fund for Distinguished Young Scientists(51125029)
文摘To compare the formation mechanisms of He and Ar atmospheric pressure plasma jets(APPJs),an intensified charge-coupled device(ICCD)are utilized to observe the dynamic process of APPJ.The experimental results show that,He APPJ is first ignited,which is independent of the dielectric barrier discharge(DBD)between the two wrapped electrodes when the high voltage placed at the downstream.The intensity and APPJ length under positive discharge pulses are bigger than that under negative discharge pulses due to the space charge effect.The He APPJ is formed by the DBD development when the high-voltage electrode placed at the upstream side of tube.However,the plasma plume in Ar APPJ is formed by the propagation of DBD whatever the high-voltage electrode is arranged on upstream or downstream side of ground electrode.The difference in formation mechanism between He and Ar APPJs is mainly caused by the gas properties.Moreover,during the discharges,Ar tends to lead to thermal instability and electron Maxwellian instability.
基金Project(2007CB416608) supported by the Major State Basic Research Development Program of ChinaProject(2006BAB01B07) supported by the National Scientific Project for Tackcling Key Problems
文摘Based on the basic geological features of Yixingzhai gold deposit, the geological features, classification and relation to mineralization of breccia pipes were discussed by surveying the xenoliths and breccia's mineral composition, structure and construction, typical mineralization alteration phenomenon on field and microscopic anatomy in breccia pipes. And the ore-controlling mechanism and the formation mechanism of the blasting breccia pipes were investigated. The main conclusion shows that Hewan and Nanmenshan breccia pipes nearby the NW-striking deep fault are shaped earlier, belonging to the acidic siliceous ingredient production of ultra-hypabyssal magmatic in the late magma stage; Tietangdong and Nanmenshan breccia pipes that are shaped latter are the ultra-hypabyssal auriferous fluid production composed mainly of the skarn in the hydrothermal stage after the magma period. Both root in the unified deep magmatic chamber, belonging to differentiation derivatives at different stages in the deep magmatic chamber.
文摘By using LS-DYNA simulation software,the influences of some structure parameters,such as top cone angle,wall thickness,liner height and height ratio of top cone,of double-angle liner on the jet formation were studied respectively.Their influences on jet tip velocity,tail velocity and penetration depth were revealed.The simulation results show that the formation is better if the top cone angle is selected as 28°,the wall is 2.6mm,the liner height is 140mm,and the height ratio of top cone is 60%.In large stand-off distance,the jet has a higher tip velocity,and the tip does not break.With the stand-off distance of 8 times of the charge diameter,the experiment penetrating steel target was carried out.The experiment and simulation results are in good agreement.