Given an open bounded subset Ω of ℝ^(n) we consider the eigenvalue problem{Δu-(■u,■V)=-λvu,u>0inΩ,u=0 onδΩ,where V is a given function defined inΩandλV is the relevant eigenvalue.We determine sufficient c...Given an open bounded subset Ω of ℝ^(n) we consider the eigenvalue problem{Δu-(■u,■V)=-λvu,u>0inΩ,u=0 onδΩ,where V is a given function defined inΩandλV is the relevant eigenvalue.We determine sufficient conditions on V such that ifΩis convex,the solution u is log-concave.We also determine sufficient conditions ensuring that λ_(V),as a function of the setΩ,verifies a convexity inequality with respect to the Minkowski addition of sets.展开更多
Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the syste...Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the system is not Hermitian,the eigenvalues can still be purely real under specific symmetry.Hence,great enthusiasm has been devoted to exploring the eigenvalue problem of non-Hermitian systems.In this work,from a distinct perspective,we demonstrate that real eigenvalues can also emerge under the appropriate recursive condition of eigenstates.Consequently,our findings provide another path to extract the real energy spectrum of non-Hermitian systems,which guarantees the conservation of probability and stimulates future experimental observations.展开更多
A numerical method is proposed to calculate the eigenvalues of the Zakharov–Shabat system based on Chebyshev polynomials. A mapping in the form of tanh(ax) is constructed according to the asymptotic of the potential ...A numerical method is proposed to calculate the eigenvalues of the Zakharov–Shabat system based on Chebyshev polynomials. A mapping in the form of tanh(ax) is constructed according to the asymptotic of the potential function for the Zakharov–Shabat eigenvalue problem. The mapping can distribute Chebyshev nodes very well considering the gradient for the potential function. Using Chebyshev polynomials, tanh(ax) mapping, and Chebyshev nodes, the Zakharov–Shabat eigenvalue problem is transformed into a matrix eigenvalue problem. This method has good convergence for the Satsuma–Yajima potential and the convergence rate is faster than the Fourier collocation method. This method is not only suitable for simple potential functions but also converges quickly for a complex Y-shape potential. It can also be further extended to other linear eigenvalue problems.展开更多
We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and...We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method.展开更多
In present paper, using some methods of approximation theory, the trace formulas for eigenvalues of a eigenvalue problem are calculated under the periodic condition and the decaying condition at x∞.
In this article, we consider the eigenvalue problem for the bi-Kohn Laplacian and obtain universal bounds on the (k + 1)-th eigenvalue in terms of the first k eigenvalues independent of the domains.
In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered in...In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.展开更多
Let Ω be a connected bounded domain in R^n. Denote by λi the i-th eigenvalue of the Lapla^ian operator with any order p:{u=Эn→^-Эu=…=Эn→p-1^-Эp-1u=0 on ЭΩ (-△)pu=λu in Ω.In this article, we give som...Let Ω be a connected bounded domain in R^n. Denote by λi the i-th eigenvalue of the Lapla^ian operator with any order p:{u=Эn→^-Эu=…=Эn→p-1^-Эp-1u=0 on ЭΩ (-△)pu=λu in Ω.In this article, we give some expressions for upper bound of the (k + 1)-th eigenvalue )λk+l in terms of the first k eigenvalues.展开更多
In this paper,we investigate the Dirichlet eigenvalue problem of fourth-order weighted polynomial operator △2u-a△u+bu=Λρu,inΩRn,u|Ω=uvΩ=0,where the constants a,b≥0.We obtain some estimates for the upper boun...In this paper,we investigate the Dirichlet eigenvalue problem of fourth-order weighted polynomial operator △2u-a△u+bu=Λρu,inΩRn,u|Ω=uvΩ=0,where the constants a,b≥0.We obtain some estimates for the upper bounds of the (k+1)-th eigenvalueΛ_k+1 in terms of the first k eigenvalues.Moreover,these results contain some results for the biharmonic operator.展开更多
In this paper, we consider eigenvalues of the Dirichlet biharmonic operator on a bounded domain in a hyperbolic space. We obtain universal bounds on the (k + 1)th eigenvalue in terms of the first kth eigenvalues in...In this paper, we consider eigenvalues of the Dirichlet biharmonic operator on a bounded domain in a hyperbolic space. We obtain universal bounds on the (k + 1)th eigenvalue in terms of the first kth eigenvalues independent of the domains.展开更多
This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u = -λu, x ∈Ω , u = 0, x ∈δΩ, where Ω belong to R^n is a smooth bounded convex domain. By using the method of appropriate barr...This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u = -λu, x ∈Ω , u = 0, x ∈δΩ, where Ω belong to R^n is a smooth bounded convex domain. By using the method of appropriate barrier function combined with the maximum principle, authors obtain a sharp lower bound of the difference of the first two eigenvalues for the Dirichlet eigenvalue problem. This study improves the result of S.T. Yau et al.展开更多
The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eige...The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eigenvalue and the ground eigenfunction of the angular spheroidal wave equation at low frequency in a series form. Using this approach, the numerical determinations of the ground eigenvalue and the ground eigenfunction for small complex frequencies are also obtained.展开更多
Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmande...Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmander's condition, then the vectorfield is finitely degenerate and the sum of square operator △X =m∑j=1 X2 j is a finitely de-generate elliptic operator. In this paper, we shall study the sharp estimate of the Dirichlet eigenvalue for a class of general Grushin type degenerate elliptic operators △x on Ω.展开更多
Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are ea...Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are easy to solve using traditional numerical methods albeit still challenging using neural networks for a wide range of practical problems.We present two networks,namely the Generalized Inverse Power Method Neural Network(GIPMNN)and Physics-Constrained GIPMNN(PC-GIPIMNN)to solve K-eigenvalue problems in neutron diffusion theory.GIPMNN follows the main idea of the inverse power method and determines the lowest eigenvalue using an iterative method.The PC-GIPMNN additionally enforces conservative interface conditions for the neutron flux.Meanwhile,Deep Ritz Method(DRM)directly solves the smallest eigenvalue by minimizing the eigenvalue in Rayleigh quotient form.A comprehensive study was conducted using GIPMNN,PC-GIPMNN,and DRM to solve problems of complex spatial geometry with variant material domains from the fleld of nuclear reactor physics.The methods were compared with the standard flnite element method.The applicability and accuracy of the methods are reported and indicate that PC-GIPMNN outperforms GIPMNN and DRM.展开更多
Most source number estimation methods based on the eigenvalues are decomposed by covariance matrix in MUSIC algorithm. To develop the source number estimation method which has lower signal to noise ratio and is suitab...Most source number estimation methods based on the eigenvalues are decomposed by covariance matrix in MUSIC algorithm. To develop the source number estimation method which has lower signal to noise ratio and is suitable to both correlated and uncorrelated impinging signals, a new source number estimation method called beam eigenvalue method (BEM) is proposed in this paper. Through analyzing the space power spectrum and the correlation of the line array, the covariance matrix is constructed in a new way, which is decided by the line array shape when the signal frequency is given. Both of the theory analysis and the simulation results show that the BEM method can estimate the source number for correlated signals and can be more effective at lower signal to noise ratios than the normal source number estimation methods.展开更多
In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The co...In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The convergence of this new stabilized method is proved and the optimal priori error estimates for the eigenfunctions and eigenvalues are also obtained.Moreover,we combine this new stabilized finite element method with the two-level method to give a new two-level stabilized finite element method for the Stokes eigenvalue problem.Furthermore,we have proved a priori error estimates for this new two-level stabilized method.Finally,numerical examples confirm our theoretical analysis and validate the high effectiveness of the new methods.展开更多
In this article, we study the first two eigenvalues of the higher order buckling problem on a domain in the unit sphere. We obtain an estimate on the second eigenvalue in terms of the first eigenvalue. In particular, ...In this article, we study the first two eigenvalues of the higher order buckling problem on a domain in the unit sphere. We obtain an estimate on the second eigenvalue in terms of the first eigenvalue. In particular, the estimate on first two eigenvalues of the higher order buckling problem of Huang, Li and Qi [5] is included in our results.展开更多
In this paper, we prove that several different definitions of the Finsler-Laplacian are equivalent. Then we prove that any Berwald metric is affinely equivalent to its mean metric and give some upper or lower bound es...In this paper, we prove that several different definitions of the Finsler-Laplacian are equivalent. Then we prove that any Berwald metric is affinely equivalent to its mean metric and give some upper or lower bound estimates for the first eigenvalue of the mean Laplacian on Berwald manifolds, which generalize some results in Riemannian geometry.展开更多
The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such th...The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.展开更多
基金supported by the project Disuguaglianze analitiche e geometriche,funded by the Gruppo per Analisi Matematica la Probabilitàe le loro Applicazioni.
文摘Given an open bounded subset Ω of ℝ^(n) we consider the eigenvalue problem{Δu-(■u,■V)=-λvu,u>0inΩ,u=0 onδΩ,where V is a given function defined inΩandλV is the relevant eigenvalue.We determine sufficient conditions on V such that ifΩis convex,the solution u is log-concave.We also determine sufficient conditions ensuring that λ_(V),as a function of the setΩ,verifies a convexity inequality with respect to the Minkowski addition of sets.
基金This work was supported by the National Natural Science Foundation of China(Grant No.62071248)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY223109)China Postdoctoral Science Foundation(Grant No.2022M721693).
文摘Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the system is not Hermitian,the eigenvalues can still be purely real under specific symmetry.Hence,great enthusiasm has been devoted to exploring the eigenvalue problem of non-Hermitian systems.In this work,from a distinct perspective,we demonstrate that real eigenvalues can also emerge under the appropriate recursive condition of eigenstates.Consequently,our findings provide another path to extract the real energy spectrum of non-Hermitian systems,which guarantees the conservation of probability and stimulates future experimental observations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52171251,U2106225,and 52231011)Dalian Science and Technology Innovation Fund (Grant No.2022JJ12GX036)。
文摘A numerical method is proposed to calculate the eigenvalues of the Zakharov–Shabat system based on Chebyshev polynomials. A mapping in the form of tanh(ax) is constructed according to the asymptotic of the potential function for the Zakharov–Shabat eigenvalue problem. The mapping can distribute Chebyshev nodes very well considering the gradient for the potential function. Using Chebyshev polynomials, tanh(ax) mapping, and Chebyshev nodes, the Zakharov–Shabat eigenvalue problem is transformed into a matrix eigenvalue problem. This method has good convergence for the Satsuma–Yajima potential and the convergence rate is faster than the Fourier collocation method. This method is not only suitable for simple potential functions but also converges quickly for a complex Y-shape potential. It can also be further extended to other linear eigenvalue problems.
基金supported by the National Natural Science Foundation of China(11571132,12301542)the Natural Science Foundation of Hubei(2022CFB725)the Natural Science Foundation of Yichang(A23-2-027)。
文摘We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method.
基金Supported by the National Basic Research Program(973 Program)of China(2013CB329402)the National Natural Science Foundation of China(61473215,61472306,61271302,61272282,61272176)
文摘In present paper, using some methods of approximation theory, the trace formulas for eigenvalues of a eigenvalue problem are calculated under the periodic condition and the decaying condition at x∞.
文摘In this article, we consider the eigenvalue problem for the bi-Kohn Laplacian and obtain universal bounds on the (k + 1)-th eigenvalue in terms of the first k eigenvalues independent of the domains.
文摘In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.
基金supported by NSFC (10471108,10631020) of ChinaNSF of Henan Provincial Education Department (2010A110008)
文摘Let Ω be a connected bounded domain in R^n. Denote by λi the i-th eigenvalue of the Lapla^ian operator with any order p:{u=Эn→^-Эu=…=Эn→p-1^-Эp-1u=0 on ЭΩ (-△)pu=λu in Ω.In this article, we give some expressions for upper bound of the (k + 1)-th eigenvalue )λk+l in terms of the first k eigenvalues.
基金supported by the National Natural Science Foundation of China(11001130)the NUST Research Funding(2010ZYTS064)supported by China Postdoctoral Science Foundation(20080430351)
文摘In this paper,we investigate the Dirichlet eigenvalue problem of fourth-order weighted polynomial operator △2u-a△u+bu=Λρu,inΩRn,u|Ω=uvΩ=0,where the constants a,b≥0.We obtain some estimates for the upper bounds of the (k+1)-th eigenvalueΛ_k+1 in terms of the first k eigenvalues.Moreover,these results contain some results for the biharmonic operator.
基金supported by NSFC (11001076)Project of Henan Provincial department of Sciences and Technology (092300410143)+1 种基金NSF of Henan Provincial Education Department (2009A110010 2010A110008)
文摘In this paper, we consider eigenvalues of the Dirichlet biharmonic operator on a bounded domain in a hyperbolic space. We obtain universal bounds on the (k + 1)th eigenvalue in terms of the first kth eigenvalues independent of the domains.
基金This research was supported by the National Natural Science Foundation of Chinathe Scientific Research Foundation of the Ministry of Education of China (02JA790014)+1 种基金the Natural Science Foundation of Fujian Province Education Department(JB00078)the Developmental Foundation of Science and Technology of Fuzhou University (2004-XQ-16)
文摘This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u = -λu, x ∈Ω , u = 0, x ∈δΩ, where Ω belong to R^n is a smooth bounded convex domain. By using the method of appropriate barrier function combined with the maximum principle, authors obtain a sharp lower bound of the difference of the first two eigenvalues for the Dirichlet eigenvalue problem. This study improves the result of S.T. Yau et al.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10875018 and 10773002)
文摘The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eigenvalue and the ground eigenfunction of the angular spheroidal wave equation at low frequency in a series form. Using this approach, the numerical determinations of the ground eigenvalue and the ground eigenfunction for small complex frequencies are also obtained.
基金partially supported by the NSFC(11631011,11626251)
文摘Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmander's condition, then the vectorfield is finitely degenerate and the sum of square operator △X =m∑j=1 X2 j is a finitely de-generate elliptic operator. In this paper, we shall study the sharp estimate of the Dirichlet eigenvalue for a class of general Grushin type degenerate elliptic operators △x on Ω.
基金partially supported by the National Natural Science Foundation of China(No.11971020)Natural Science Foundation of Shanghai(No.23ZR1429300)Innovation Funds of CNNC(Lingchuang Fund)。
文摘Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are easy to solve using traditional numerical methods albeit still challenging using neural networks for a wide range of practical problems.We present two networks,namely the Generalized Inverse Power Method Neural Network(GIPMNN)and Physics-Constrained GIPMNN(PC-GIPIMNN)to solve K-eigenvalue problems in neutron diffusion theory.GIPMNN follows the main idea of the inverse power method and determines the lowest eigenvalue using an iterative method.The PC-GIPMNN additionally enforces conservative interface conditions for the neutron flux.Meanwhile,Deep Ritz Method(DRM)directly solves the smallest eigenvalue by minimizing the eigenvalue in Rayleigh quotient form.A comprehensive study was conducted using GIPMNN,PC-GIPMNN,and DRM to solve problems of complex spatial geometry with variant material domains from the fleld of nuclear reactor physics.The methods were compared with the standard flnite element method.The applicability and accuracy of the methods are reported and indicate that PC-GIPMNN outperforms GIPMNN and DRM.
文摘Most source number estimation methods based on the eigenvalues are decomposed by covariance matrix in MUSIC algorithm. To develop the source number estimation method which has lower signal to noise ratio and is suitable to both correlated and uncorrelated impinging signals, a new source number estimation method called beam eigenvalue method (BEM) is proposed in this paper. Through analyzing the space power spectrum and the correlation of the line array, the covariance matrix is constructed in a new way, which is decided by the line array shape when the signal frequency is given. Both of the theory analysis and the simulation results show that the BEM method can estimate the source number for correlated signals and can be more effective at lower signal to noise ratios than the normal source number estimation methods.
基金supported by the National Key R&D Program of China(2018YFB1501001)the NSF of China(11771348)China Postdoctoral Science Foundation(2019M653579)。
文摘In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The convergence of this new stabilized method is proved and the optimal priori error estimates for the eigenfunctions and eigenvalues are also obtained.Moreover,we combine this new stabilized finite element method with the two-level method to give a new two-level stabilized finite element method for the Stokes eigenvalue problem.Furthermore,we have proved a priori error estimates for this new two-level stabilized method.Finally,numerical examples confirm our theoretical analysis and validate the high effectiveness of the new methods.
文摘In this article, we study the first two eigenvalues of the higher order buckling problem on a domain in the unit sphere. We obtain an estimate on the second eigenvalue in terms of the first eigenvalue. In particular, the estimate on first two eigenvalues of the higher order buckling problem of Huang, Li and Qi [5] is included in our results.
文摘In this paper, we prove that several different definitions of the Finsler-Laplacian are equivalent. Then we prove that any Berwald metric is affinely equivalent to its mean metric and give some upper or lower bound estimates for the first eigenvalue of the mean Laplacian on Berwald manifolds, which generalize some results in Riemannian geometry.
基金This work is supported by the NSF of China (10471039, 10271043) and NSF of Zhejiang Province (M103087).
文摘The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.