随着网络上越来越多的人发表自己的观点,带有情绪的贴文也逐渐增多,负面情绪的累积可能导致舆论失控,准确地识别贴文的情感极性能有效分析舆论现状。目前方面级的情感分析尚未有效融合语法信息以及语义信息,无法同时考虑语法结构的互补...随着网络上越来越多的人发表自己的观点,带有情绪的贴文也逐渐增多,负面情绪的累积可能导致舆论失控,准确地识别贴文的情感极性能有效分析舆论现状。目前方面级的情感分析尚未有效融合语法信息以及语义信息,无法同时考虑语法结构的互补性和语义相关性。为此,提出了一个融合语法和语义的方面级情感分析模型(Aspect-level Sentiment Analysis Mo-dels Based on Syntax and Semantics,SS-GCN),包括语法分析模块、语义分析模块以及融合模块。首先将文本作为预训练BERT模型的输入,通过语法分析模块获得语法关联关系的特征表示,同时经由邻域增强机制的语义分析模块捕获语义的相关性的特征表示。最后把二者输入到融合模块,在仿射变换的作用下对语法信息和语义信息进行有效的交互和融合,实现方面级情感分析。展开更多
有效地识别学科交叉文献,不仅有助于及时把握学科交叉的研究态势、实时跟踪学科交叉地带的科研活动,还能为科研决策提供有力支持。本文根据科技文献蕴含的语义交叉性,提出一种基于改进的深度学习模型的学科交叉文献识别方法。首先,通过...有效地识别学科交叉文献,不仅有助于及时把握学科交叉的研究态势、实时跟踪学科交叉地带的科研活动,还能为科研决策提供有力支持。本文根据科技文献蕴含的语义交叉性,提出一种基于改进的深度学习模型的学科交叉文献识别方法。首先,通过“文本合并”获得用于学科交叉文献识别的训练数据集;其次,提出一种改进的基于深度学习的文本分类模型,并在训练集上进行模型训练;最后,基于训练好的模型,对待分析的科技文献是否为学科交叉文献进行判别。在“牙科材料学”和“计算生物学”两个数据集上,对本文方法进行实证研究。结果表明,本文方法在学科交叉文献识别上具有较好的有效性,在两个数据集上计算得到的AUC(area under the curve)值分别达到0.741和0.966。与传统的基于深度学习的文本分类方法相比,本文方法可以在不依赖任何交叉学科先验知识的情况下,基于已有的非学科交叉文献训练学科交叉文献识别模型,从而能够在新的科技文献出现时,准确地判别其是否为学科交叉文献,实现有发展潜力的前沿交叉领域的实时监测。同时,学科交叉文献识别的效果也得到了较大幅度的提高。展开更多
文摘随着网络上越来越多的人发表自己的观点,带有情绪的贴文也逐渐增多,负面情绪的累积可能导致舆论失控,准确地识别贴文的情感极性能有效分析舆论现状。目前方面级的情感分析尚未有效融合语法信息以及语义信息,无法同时考虑语法结构的互补性和语义相关性。为此,提出了一个融合语法和语义的方面级情感分析模型(Aspect-level Sentiment Analysis Mo-dels Based on Syntax and Semantics,SS-GCN),包括语法分析模块、语义分析模块以及融合模块。首先将文本作为预训练BERT模型的输入,通过语法分析模块获得语法关联关系的特征表示,同时经由邻域增强机制的语义分析模块捕获语义的相关性的特征表示。最后把二者输入到融合模块,在仿射变换的作用下对语法信息和语义信息进行有效的交互和融合,实现方面级情感分析。
文摘有效地识别学科交叉文献,不仅有助于及时把握学科交叉的研究态势、实时跟踪学科交叉地带的科研活动,还能为科研决策提供有力支持。本文根据科技文献蕴含的语义交叉性,提出一种基于改进的深度学习模型的学科交叉文献识别方法。首先,通过“文本合并”获得用于学科交叉文献识别的训练数据集;其次,提出一种改进的基于深度学习的文本分类模型,并在训练集上进行模型训练;最后,基于训练好的模型,对待分析的科技文献是否为学科交叉文献进行判别。在“牙科材料学”和“计算生物学”两个数据集上,对本文方法进行实证研究。结果表明,本文方法在学科交叉文献识别上具有较好的有效性,在两个数据集上计算得到的AUC(area under the curve)值分别达到0.741和0.966。与传统的基于深度学习的文本分类方法相比,本文方法可以在不依赖任何交叉学科先验知识的情况下,基于已有的非学科交叉文献训练学科交叉文献识别模型,从而能够在新的科技文献出现时,准确地判别其是否为学科交叉文献,实现有发展潜力的前沿交叉领域的实时监测。同时,学科交叉文献识别的效果也得到了较大幅度的提高。