In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite differ...In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme.展开更多
Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order tim...Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.展开更多
The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, wher...The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, where the nonlocal time-space coupled fractional substantial derivative is involved. This paper focuses on the more widely used backward version. Based on the newly proposed approximation operators for fractional substantial derivative, we establish compact finite difference schemes for the backward fractional Feynman-Kac equation. The proposed difference schemes have the q-th(q = 1, 2, 3, 4) order accuracy in temporal direction and fourth order accuracy in spatial direction, respectively. The numerical stability and convergence in the maximum norm are proved for the first order time discretization scheme by the discrete energy method, where an inner product in complex space is introduced. Finally, extensive numerical experiments are carried out to verify the availability and superiority of the algorithms. Also, simulations of the backward fractional Feynman-Kac equation with Dirac delta function as the initial condition are performed to further confirm the effectiveness of the proposed methods.展开更多
A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of ...A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of their conserved quantities. We show consistency of the scheme for arbitrarily large Courant numbers. For scalar problems the scheme is total variation diminishing.A brief discussion is given for entropy condition.展开更多
The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order sy...The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order symplectic finite- difference time-domain (SFDTD) scheme for the first time. By splitting the fields on one-dimensional grid and using the nature of numerical plane-wave in finite-difference time-domain (FDTD), the identical dispersion relation can be obtained and proved between the one-dimensional and three-dimensional grids. An efficient plane-wave source is simulated on one-dimensional grid and a perfect match can be achieved for a plane-wave propagating at any angle forming an integer grid cell ratio. Numerical simulations show that the method is valid for SFDTD and the residual field in SF region is shrinked down to -300 dB.展开更多
An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D tra...An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.展开更多
For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation r...For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution.展开更多
In this paper,the convergence and stability of the ’Leap-frog’ finite difference scheme for the semilinear wave equation are proved by using of the bounded extensive method under more generalized condition for the n...In this paper,the convergence and stability of the ’Leap-frog’ finite difference scheme for the semilinear wave equation are proved by using of the bounded extensive method under more generalized condition for the nonlinear term. The more complex standard a priori estimates are avoided so that the theoretical results are complemented for the scheme which was presented by Perring and Skyrne (1962).展开更多
A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By usi...A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By using a kind of special interpolation, the high resolution Boltzmann type difference scheme is constructed. Finally, numerical tests show that the schemes are effective and useful.展开更多
A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines...A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method.展开更多
The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference ...The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference scheme is constructed. The stability and convergence of that scheme are studied. Numerical experiments are carried out. The appropriate graphical illustrations and tables are given.展开更多
使用激波捕捉法求解以数学间断作为初始条件的无黏可压缩流场时,间断结构会逐渐演变为包含多个网格节点的数值过渡区,在此过程中会产生两个平行于间断且规则分布的非物理波动。使用捕捉法计算激波流场时,流场参数应满足修正方程,但作为...使用激波捕捉法求解以数学间断作为初始条件的无黏可压缩流场时,间断结构会逐渐演变为包含多个网格节点的数值过渡区,在此过程中会产生两个平行于间断且规则分布的非物理波动。使用捕捉法计算激波流场时,流场参数应满足修正方程,但作为初始条件进行计算的初始激波满足Euler方程,两者之间的矛盾是产生初始激波诱导非物理波动的原因。鉴于激波等间断是由特征型Euler方程定义的,从该方程出发构造了一种基于特征值迎风特性的通量计算格式(upwind flux scheme based on characteristics,UFSC),并采用若干种常规守恒型通量分裂格式作为参考。数值计算结果表明,UFSC可以消除Steger-Warming、Van Leer等矢通量分裂格式的初始接触间断诱导非物理波动,还可以减小初始激波诱导扰动的幅值。在光滑流场区域,UFSC和矢通量分裂格式的计算结果相近,但是在强激波附近会出现较大的压力尖峰。为克服这一缺陷,进一步构造了在激波区域和其他区域分别采用Steger-Warming格式和UFSC格式计算的混合通量计算格式UFSC+S,可以有效抑制初始激波诱导误差,提高计算精度。展开更多
针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根...针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根据模型中的边界条件和初始条件设计COB-LED常温点亮实验,并基于ANSYS有限元分析软件进行仿真分析。通过比较求解结果、仿真结果和实验结果验证该数学模型的合理性。结果表明,求解结果与实验结果中最高温度相对误差约23.57%,且两者的温度变化趋势一致。求解结果与仿真结果中最高温度相对误差约34.84%,且温度分布较为接近,证明了该数学模型的合理性与正确性。展开更多
文摘In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme.
基金Supported by the Discipline Construction and Teaching Research Fund of LUTcte(20140089)
文摘Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471262)Henan University of Technology High-level Talents Fund,China(Grant No.2018BS039)
文摘The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, where the nonlocal time-space coupled fractional substantial derivative is involved. This paper focuses on the more widely used backward version. Based on the newly proposed approximation operators for fractional substantial derivative, we establish compact finite difference schemes for the backward fractional Feynman-Kac equation. The proposed difference schemes have the q-th(q = 1, 2, 3, 4) order accuracy in temporal direction and fourth order accuracy in spatial direction, respectively. The numerical stability and convergence in the maximum norm are proved for the first order time discretization scheme by the discrete energy method, where an inner product in complex space is introduced. Finally, extensive numerical experiments are carried out to verify the availability and superiority of the algorithms. Also, simulations of the backward fractional Feynman-Kac equation with Dirac delta function as the initial condition are performed to further confirm the effectiveness of the proposed methods.
基金The Project Supported by National Natural Science Foundation of China.
文摘A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of their conserved quantities. We show consistency of the scheme for arbitrarily large Courant numbers. For scalar problems the scheme is total variation diminishing.A brief discussion is given for entropy condition.
基金supported by the National Natural Science Foundation of China(Grant Nos.60931002 and 61101064)the Universities Natural Science Foundation of Anhui Province,China(Grant Nos.KJ2011A002 and 1108085J01)
文摘The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order symplectic finite- difference time-domain (SFDTD) scheme for the first time. By splitting the fields on one-dimensional grid and using the nature of numerical plane-wave in finite-difference time-domain (FDTD), the identical dispersion relation can be obtained and proved between the one-dimensional and three-dimensional grids. An efficient plane-wave source is simulated on one-dimensional grid and a perfect match can be achieved for a plane-wave propagating at any angle forming an integer grid cell ratio. Numerical simulations show that the method is valid for SFDTD and the residual field in SF region is shrinked down to -300 dB.
基金supported by the National Natural Science Foundation of China(Grant Nos.61331007 and 61471105)
文摘An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.
基金the Major State Basic Research Program of China(19990328)NNSF of China(19871051,19972039) the Doctorate Foundation of the State Education Commission
文摘For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution.
文摘In this paper,the convergence and stability of the ’Leap-frog’ finite difference scheme for the semilinear wave equation are proved by using of the bounded extensive method under more generalized condition for the nonlinear term. The more complex standard a priori estimates are avoided so that the theoretical results are complemented for the scheme which was presented by Perring and Skyrne (1962).
文摘A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By using a kind of special interpolation, the high resolution Boltzmann type difference scheme is constructed. Finally, numerical tests show that the schemes are effective and useful.
基金supported by the National Natural Science Foundation of China(11871312,12131014)the Natural Science Foundation of Shandong Province,China(ZR2023MA086)。
文摘A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method.
文摘The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference scheme is constructed. The stability and convergence of that scheme are studied. Numerical experiments are carried out. The appropriate graphical illustrations and tables are given.
文摘使用激波捕捉法求解以数学间断作为初始条件的无黏可压缩流场时,间断结构会逐渐演变为包含多个网格节点的数值过渡区,在此过程中会产生两个平行于间断且规则分布的非物理波动。使用捕捉法计算激波流场时,流场参数应满足修正方程,但作为初始条件进行计算的初始激波满足Euler方程,两者之间的矛盾是产生初始激波诱导非物理波动的原因。鉴于激波等间断是由特征型Euler方程定义的,从该方程出发构造了一种基于特征值迎风特性的通量计算格式(upwind flux scheme based on characteristics,UFSC),并采用若干种常规守恒型通量分裂格式作为参考。数值计算结果表明,UFSC可以消除Steger-Warming、Van Leer等矢通量分裂格式的初始接触间断诱导非物理波动,还可以减小初始激波诱导扰动的幅值。在光滑流场区域,UFSC和矢通量分裂格式的计算结果相近,但是在强激波附近会出现较大的压力尖峰。为克服这一缺陷,进一步构造了在激波区域和其他区域分别采用Steger-Warming格式和UFSC格式计算的混合通量计算格式UFSC+S,可以有效抑制初始激波诱导误差,提高计算精度。
文摘针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根据模型中的边界条件和初始条件设计COB-LED常温点亮实验,并基于ANSYS有限元分析软件进行仿真分析。通过比较求解结果、仿真结果和实验结果验证该数学模型的合理性。结果表明,求解结果与实验结果中最高温度相对误差约23.57%,且两者的温度变化趋势一致。求解结果与仿真结果中最高温度相对误差约34.84%,且温度分布较为接近,证明了该数学模型的合理性与正确性。