To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur...To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.展开更多
Vulnerability-testing Oriented Petri Net (VOPN), a vulnerability testing model for communication protocol is brought forward first, which is combined Petri Net system with protocol Syntax analysis. Then vulnerabilit...Vulnerability-testing Oriented Petri Net (VOPN), a vulnerability testing model for communication protocol is brought forward first, which is combined Petri Net system with protocol Syntax analysis. Then vulnerability testing of implementation of HTTP protocol based on VOPN is made and the process is analyzed to prove the feasibility of the model.展开更多
This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke ...This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke mooring system (SYMS) in extremely shallow water. The scope of the model test and the virtual simulation covers various installation stages including a series of positioning trials, positioning keeping and temporary mooring to the pre-installed SYMS mooring tower, pendulum mating, and yoke ballasting to storm-safe. The model test is to accurately verify bollard pull capacity to keep the FPSO in position and assess motion responses and mooring loads for the FPSO and installation vessels during various installation stages. The virtual simulation is to provide a virtual-reality environment, thus realistically replicating the hookup operation at the Simulation Test Center (STC) facility and identifying any deficiencies in key installation personnel, execution plan, or operation procedures. The methodologies of the model test and the virtual simulation addressed here can be easily extended to the deepwater applications such as positioning and installation operations of various floating systems.展开更多
Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off str...Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off stress transfer between the roadway and gob to ensure the collapse of the overlying strata.The roadway is automatically formed owing to the broken expansion characteristics of the collapsed strata and mining pressure.Taking the Suncun Coal Mine as the engineering background,the control effect of this new technology on roadways was studied.To compare the law of stress evolution and the surrounding rock control mechanisms between AFR and traditional gob-side entry driving,a comparative study of geomechanical model tests on the above methods was carried out.The results showed that the new technology of AFR by RCBG effectively reduced the stress concentration of the roadway compared with gob-side entry driving.The side abutment pressure peak of the solid coal side was reduced by 24.3%,which showed an obvious pressure-releasing effect.Moreover,the position of the side abutment pressure peak was far from the solid coal side,making it more beneficial for roadway stability.The deformation of AFR surrounding rock was also smaller than the deformation of the gob-side entry driving by the overload test.The former was more beneficial for roadway stability than the latter under higher stress conditions.Field application tests showed that the new technology can effectively control roadway deformation.Moreover,the technology reduced roadway excavation and avoided resource waste caused by reserved coal pillars.展开更多
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ...To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks.展开更多
A physical model for the footwall slope of Nanfen open-pit mine, China was established using a selfdeveloped deep geological engineering disaster model test system. A thermosensitive similar material,paraffin, was sel...A physical model for the footwall slope of Nanfen open-pit mine, China was established using a selfdeveloped deep geological engineering disaster model test system. A thermosensitive similar material,paraffin, was selected to simulate a weak structural plane in the slope to reproduce the landslide process.From an experimental perspective, the variation trend of shear strength parameters of weak structural plane and the mechanical support characteristics of NPR(negative Poisson’s ratio) anchor cable under the condition of a large landslide deformation and failure were examined. The results of this model test showed that slope failure has four distinct stages:(1) soil compaction stage,(2) crack generation stage,(3) crack propagation stage, and(4) sliding plane transfixion stage. According to the test results, the rock mechanics parameters of weak surface in the footwall slope of Nanfen open-pit mine were calculated.The cohesion is approximately 1.35×10~5 Pa, and the internal friction angle is approximately 6.33°.During slope failure, the NPR anchor cable experiences a large deformation but no damage occurs, indicating that the NPR anchor cable can be continuously monitored and reinforced during the deformation and failure of landslide. The stress characteristics of NPR anchor cables during the test are consistent with the monitoring results of Newtonian force at the landslide site, proving that NPR anchor cables are effective and reasonable in landslide monitoring and early warning.展开更多
An S-lay crane barge,named CNOOC 201,has been built for pipe laying in deepwater oil/gas fields in the South China Sea.It is due to be commissioned by the end of the year 2010.A special lifting system is developed to ...An S-lay crane barge,named CNOOC 201,has been built for pipe laying in deepwater oil/gas fields in the South China Sea.It is due to be commissioned by the end of the year 2010.A special lifting system is developed to meet the challenge that installing deepwater risers from an S-lay barge is difficult and has not been achieved.The purpose of this paper was to investigate the model test on such an innovative system,which has to be done before field application.By applying the similarity theory,the movement of the S-lay barge is simulated through a six degrees-of-freedom motion platform,and a truncated model riser is utilized for the model testing.The displacement and force boundary conditions at the truncated position of the riser are obtained from the catenary governing equation and become realized by a slideway cart and a loading system designed to control the configuration of the model riser,which presents a similar configuration to a real riser in deepwater.The test results are in very good agreement with theoretical calculations,showing that the active truncated test is applicable for controlling the configuration of the deepwater riser in model testing investigation.展开更多
Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-...Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-repellent wall), air injection, and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships. Micro-bubble injection is a promising technique for lowering frictional resistance. The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction. The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions: L=2 450 ram, B=400 mm, and T=190 mm. The influence of the location of micro bubble injection and bubble velocity was also investigated. The ship model was pulled by an electric motor whose speed could be varied and adjusted. The ship model resistance was precisely measured by a load cell transducer. Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number. It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction, and the drag reduction caused by the micro-bubbles can reach 6%-9%.展开更多
For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test sta...For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test stand to carry out model tests of similar materials in order to improve the effect of gas drainage from low protected seams and to measure the movement and deformation of coal-rock mass using a method of non-contact close-range photogrammetry.Our results show that 1) using paraffin melting to take the place of coal seam mining can satisfy the mining conditions of a protective seam;2) coal-rock mass under goafs has an upward movement after the protective seam has been mined,causing floor heaving;3) low protected seams become swollen and deformed,providing a good pressure-relief effect and causing the coal-rock mass under both sides of coal pillars to become deformed by compression and 4) the evolution of permeability of low protected seams follows the way of initial values→a slight decrease→a great increase→stability→final decrease.Simultaneously,the coefficient of air permeability increased at a decreasing rate with an increase in interlayer spacing.展开更多
Mitchell's solution is commonly used to determine the required strength of vertically exposed cemented backfill in mines. Developed for drained backfill, Mitchell model assumed a zero friction angle for the backfi...Mitchell's solution is commonly used to determine the required strength of vertically exposed cemented backfill in mines. Developed for drained backfill, Mitchell model assumed a zero friction angle for the backfill. Physical model tests were performed. Good agreements were obtained between the required strengths predicted by the analytical solution and experimental results. However, it is well-known that zero friction angle can only be possible in terms of total stresses when geomaterials are submitted to unconsolidated and undrained conditions. A revisit to Mitchell's physical model tests reveals that both the laboratory tests performed for obtaining the shear strength parameters of the cemented backfill and the box stability tests were conducted under a condition close to undrained condition. This explains well the good agreement between Mitchell's solution and experimental results. Good agreements are equally obtained between Mitchell's experimental results and FLAC3 D numerical modeling of shortterm stability analyses of exposed cemented backfill.展开更多
Physical testing of large-scale ship models at sea is a new experimental method.It is a cheap and reliable way to research the environment adaptability of a ship in complex and extreme wave conditions.It is necessary ...Physical testing of large-scale ship models at sea is a new experimental method.It is a cheap and reliable way to research the environment adaptability of a ship in complex and extreme wave conditions.It is necessary to have a stable experimental system for the test.Since the experimental area is large, a remote control system and a telemetry system are essential, and were designed by the authors.An experiment was conducted on the Songhuajiang River to test the systems.The relationship between the model's speed and its electromotor's revolutions was also measured during the model test.The results showed that the two systems make it possible to carry out large-scale model tests at sea.展开更多
Adopting a soft site model built on soft interlayer soil foundation,a shaking table test for soft interlayer soil-isolated structure interaction is conducted to investigate the seismic response of isolated structure o...Adopting a soft site model built on soft interlayer soil foundation,a shaking table test for soft interlayer soil-isolated structure interaction is conducted to investigate the seismic response of isolated structure on soft site,and analyze its isolation effect.Test results show that the test can reflect the earthquake response characteristics of isolated structure on soft site.It is on soft site that the dynamic characteristics of isolated structure,acceleration magnification factor(AMF)of isolated structure and isolation efficiency of the isolation layer differ from those on rigid foundation with an soil-structure interaction(SSI)effect,represented by the reduction in fundamental vibration frequency of isolated structure and the increase of damping ratio with changes of the SSI effect.SSI can either increase or decrease AMF of isolated structure on soft site,depending on the characteristics of earthquake motion input.Furthermore,the isolation efficiency of isolation layer on soft site is decreased with the SSI effect,which is related to the peak ground acceleration(PGA)and the characteristics of earthquake motion input.展开更多
Over the past century,the safety of dams has gradually attracted attention from all parties.Research on the dynamic response and damage evolution of dams under extreme loads is the basis of dam safety issues.In recent...Over the past century,the safety of dams has gradually attracted attention from all parties.Research on the dynamic response and damage evolution of dams under extreme loads is the basis of dam safety issues.In recent decades,scholars have studied the responses of dams under earthquake loads,but there is still much room for improvement in experimental and theoretical research on small probability loads such as explosions.In this paper,a 50-m-high concrete gravity dam is used as a prototype dam,and a water explosion model test of a 2.5-m-high concrete gravity dam is designed.The water pressure and the acceleration response of the dam body in the test are analysed.The pressure characteristics and dynamic response of the dam body are assessed.Taking the dam damage test as an example,a numerical model of concrete gravity dam damage is established,and the damage evolution of the dam body is analysed.By combining experiments and numerical simulations,the damage characteristics of the dam body under the action of different charge water explosions are clarified.The integrity of the dam body is well maintained under the action of a small-quantity water explosion,and the dynamic response of the dam body is mainly caused by the shock wave.Both the shock wave and the bubble pulsation cause the dam body to accelerate,and the peak acceleration of the dam body under the action of the bubble pulsation is only one percent of the peak acceleration of the dam body under the action of the shock wave.When subjected to explosions in large quantities of water,the dam body is seriously damaged.Under the action of a shock wave,the dam body produces a secondary acceleration response,which is generated by an internal interaction after the dam body is damaged.The damage evolution process of the dam body under the action of a large-scale water explosion is analysed,and it is found that the shock wave pressure of the water explosion causes local damage to the dam body facing the explosion.After the peak value of the shock wave,the impulse continues to act on the dam body,causing cumulative damage and damage inside the dam body.展开更多
In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring meth...In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring method was proposed in this study,and the major steps of the monitoring method include:firstly,time-series images of the similarity model in the test were obtained by a camera,and secondly,measuring points marked as artificial targets were automatically tracked and recognized from time-series images.Finally,the real-time plane displacement field was calculated by the fixed magnification between objects and images under the specific conditions.And then the application device of the method was designed and tested.At the same time,a sub-pixel location method and a distortion error model were used to improve the measuring accuracy.The results indicate that this method may record the entire test,especially the detailed non-uniform deformation and sudden deformation.Compared with traditional methods this method has a number of advantages,such as greater measurement accuracy and reliability,less manual intervention,higher automation,strong practical properties,much more measurement information and so on.展开更多
The log float technology from timber depot at the reservoir to log feeding rolls was studied by model tests. The model test was taken with the rule of gravitation similitude and ratio of 1∶10. Main parameters, like t...The log float technology from timber depot at the reservoir to log feeding rolls was studied by model tests. The model test was taken with the rule of gravitation similitude and ratio of 1∶10. Main parameters, like the amount of tug boats, hydro-accelerators and the structure of feeding rolls, were determined. The more suitable float process is put forward and the reliable basis for the design is supplied.展开更多
To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and ...To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and the dynamic response of the subgrade structure was monitored.The dynamic response attenuation characteristics along the depth direction of the subgrade were compared,and the distribution characteristics of the dynamic stress on the surface of the subgrade along the longitudinal direction of the line were analyzed.The critical dynamic stress and cumulative deformation were used as indicators to evaluate the long-term dynamic stability of the subgrade.Results show that water has a certain effect on the dynamic characteristics of the subgrade,and the dynamic stress and acceleration increase with the water content.With the dowel steel structure set between the rail-bearing beams,stress concentration at the end of the loaded beam can be prevented,and the diffusion distance of the dynamic stress along the longitudinal direction increases.The dynamic stress measured in the subgrade bed range is less than 1/5 of the critical dynamic stress.The postconstruction settlement of the subgrade after similarity ratio conversion is 3.94 mm and 7.72 mm under natural and rainfall conditions,respectively,and both values are less than the 30 mm limit,indicating that the MLS maglev subgrade structure has good long-term dynamic stability.展开更多
Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and s...Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and settlement of the embankments were analyzed, and the obtained results can be used as a reference to field construction.展开更多
Zhongshan Bridge is a kind of steel arch bridge with a particular space-combined structure. The rationality of design, accuracy of theoretical calculation and reliability of transportation were studied. Its design, FE...Zhongshan Bridge is a kind of steel arch bridge with a particular space-combined structure. The rationality of design, accuracy of theoretical calculation and reliability of transportation were studied. Its design, FEM calculation of stresses and strains, and model test were introduced in detail. The theoretical analysis and model test verified that the design was reliable and safe. The simulated stresses, rigidity and stability, which are based on the selected loading system and cross-section geometry, satisfy the related design standards. Some of the issues that need to be considered in the real bridge construction were also discussed.展开更多
Settlement control of high-speed railways is a key technology in embankment engineering. In order to reveal the engineering characteristics of the deep, completely decomposed granite soil in the Hainan East Ring Railw...Settlement control of high-speed railways is a key technology in embankment engineering. In order to reveal the engineering characteristics of the deep, completely decomposed granite soil in the Hainan East Ring Railway, four groups of centrifuge model tests were conducted. We studied the settlement properties, under the embankment action, of untreated subsoil, subsoil treated by dynamic compaction, and subsoil reinforced with cement-mixed piles. In particular, we examined the relationship between settlement and time, including the settlement during and after construction. The results show that the Weibull model can describe the relationship between embankment settlement and time well, and that the post-construction settlements of the subsoil meet the requirements of the relevant code. Among the two foundation treatment measures, dynamic compaction is more effective than reinforcement with cement-mixed piles. The tested pressure on the contact surface between embankment and subsoil was obviously different from the commonly used calculated values.展开更多
The Sandage Loeb (SL) test is a direct measurement of the cosmic expansion by probing the redshift drifts of quasi-stellar objects in the 'redshift desert' of 2 〈 z 〈 5. In this work, we investigate its constrai...The Sandage Loeb (SL) test is a direct measurement of the cosmic expansion by probing the redshift drifts of quasi-stellar objects in the 'redshift desert' of 2 〈 z 〈 5. In this work, we investigate its constraints on the unified dark energy and dark matter models including the generalized Chaplygin gas and the superfluid Chaplygin gas. In addition, type Ia supernovae (SNIa) data and the distance ratios derived from the cosmic microwave background radiation and baryon acoustic oscillation observations (CMB/BAO) are also used. We find that the mock SL data gives the tightest constraints on the model parameters and it can help to reduce the parameter regions allowed by the present SNIa+CMB/BAO by about 75% when all datasets considered are combined. Thus the SL test is a worthy and long awaited measurement to probe effectively the cosmic expanding history and the properties of dark energy.展开更多
基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20200494)China Postdoctoral Science Foundation(Grant No.2021M701725)+3 种基金Jiangsu Postdoctoral Research Funding Program(Grant No.2021K522C)Fundamental Research Funds for the Central Universities(Grant No.30919011246)National Natural Science Foundation of China(Grant No.52278188)Natural Science Foundation of Jiangsu Province(Grant No.BK20211196)。
文摘To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.
文摘Vulnerability-testing Oriented Petri Net (VOPN), a vulnerability testing model for communication protocol is brought forward first, which is combined Petri Net system with protocol Syntax analysis. Then vulnerability testing of implementation of HTTP protocol based on VOPN is made and the process is analyzed to prove the feasibility of the model.
基金Supported by the Fund from COPC PL19-3 FPSO Project
文摘This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke mooring system (SYMS) in extremely shallow water. The scope of the model test and the virtual simulation covers various installation stages including a series of positioning trials, positioning keeping and temporary mooring to the pre-installed SYMS mooring tower, pendulum mating, and yoke ballasting to storm-safe. The model test is to accurately verify bollard pull capacity to keep the FPSO in position and assess motion responses and mooring loads for the FPSO and installation vessels during various installation stages. The virtual simulation is to provide a virtual-reality environment, thus realistically replicating the hookup operation at the Simulation Test Center (STC) facility and identifying any deficiencies in key installation personnel, execution plan, or operation procedures. The methodologies of the model test and the virtual simulation addressed here can be easily extended to the deepwater applications such as positioning and installation operations of various floating systems.
基金This work was supported by the National Natural Science Foundation of China(Nos.51874188,52074164,42077267,and 51927807)the Natural Science Foundation of Shandong Province,China(Nos.2019SDZY04 and ZR2020JQ23)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program,China(No.2019KJG013).
文摘Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off stress transfer between the roadway and gob to ensure the collapse of the overlying strata.The roadway is automatically formed owing to the broken expansion characteristics of the collapsed strata and mining pressure.Taking the Suncun Coal Mine as the engineering background,the control effect of this new technology on roadways was studied.To compare the law of stress evolution and the surrounding rock control mechanisms between AFR and traditional gob-side entry driving,a comparative study of geomechanical model tests on the above methods was carried out.The results showed that the new technology of AFR by RCBG effectively reduced the stress concentration of the roadway compared with gob-side entry driving.The side abutment pressure peak of the solid coal side was reduced by 24.3%,which showed an obvious pressure-releasing effect.Moreover,the position of the side abutment pressure peak was far from the solid coal side,making it more beneficial for roadway stability.The deformation of AFR surrounding rock was also smaller than the deformation of the gob-side entry driving by the overload test.The former was more beneficial for roadway stability than the latter under higher stress conditions.Field application tests showed that the new technology can effectively control roadway deformation.Moreover,the technology reduced roadway excavation and avoided resource waste caused by reserved coal pillars.
基金supported by the National Key Research and Development Plan of China(No.2016YFC0600901)the National Natural Science Foundation of China(No.51874311)the Natural Science Foundation of China(No.51904306)。
文摘To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks.
基金This study was supported by Zhejiang Collaborative Innovation Center for Prevention and Control of Mountain Geologic Hazards(Grant no.PCMGH-2016-Z-02).
文摘A physical model for the footwall slope of Nanfen open-pit mine, China was established using a selfdeveloped deep geological engineering disaster model test system. A thermosensitive similar material,paraffin, was selected to simulate a weak structural plane in the slope to reproduce the landslide process.From an experimental perspective, the variation trend of shear strength parameters of weak structural plane and the mechanical support characteristics of NPR(negative Poisson’s ratio) anchor cable under the condition of a large landslide deformation and failure were examined. The results of this model test showed that slope failure has four distinct stages:(1) soil compaction stage,(2) crack generation stage,(3) crack propagation stage, and(4) sliding plane transfixion stage. According to the test results, the rock mechanics parameters of weak surface in the footwall slope of Nanfen open-pit mine were calculated.The cohesion is approximately 1.35×10~5 Pa, and the internal friction angle is approximately 6.33°.During slope failure, the NPR anchor cable experiences a large deformation but no damage occurs, indicating that the NPR anchor cable can be continuously monitored and reinforced during the deformation and failure of landslide. The stress characteristics of NPR anchor cables during the test are consistent with the monitoring results of Newtonian force at the landslide site, proving that NPR anchor cables are effective and reasonable in landslide monitoring and early warning.
基金support from the National Natural Science Foundation of China (granted number 50979113)the National 863 Program of China (granted number 2006AA09A105)
文摘An S-lay crane barge,named CNOOC 201,has been built for pipe laying in deepwater oil/gas fields in the South China Sea.It is due to be commissioned by the end of the year 2010.A special lifting system is developed to meet the challenge that installing deepwater risers from an S-lay barge is difficult and has not been achieved.The purpose of this paper was to investigate the model test on such an innovative system,which has to be done before field application.By applying the similarity theory,the movement of the S-lay barge is simulated through a six degrees-of-freedom motion platform,and a truncated model riser is utilized for the model testing.The displacement and force boundary conditions at the truncated position of the riser are obtained from the catenary governing equation and become realized by a slideway cart and a loading system designed to control the configuration of the model riser,which presents a similar configuration to a real riser in deepwater.The test results are in very good agreement with theoretical calculations,showing that the active truncated test is applicable for controlling the configuration of the deepwater riser in model testing investigation.
基金Supported by the Directorate for Research and Community Service,University of Indonesia(RUUI Research Laboratory 2010),Jakarta,Indonesia
文摘Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-repellent wall), air injection, and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships. Micro-bubble injection is a promising technique for lowering frictional resistance. The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction. The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions: L=2 450 ram, B=400 mm, and T=190 mm. The influence of the location of micro bubble injection and bubble velocity was also investigated. The ship model was pulled by an electric motor whose speed could be varied and adjusted. The ship model resistance was precisely measured by a load cell transducer. Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number. It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction, and the drag reduction caused by the micro-bubbles can reach 6%-9%.
基金the Major Programs of the National Basic Research Program of China (No.2005CB221503)the National Natural Science Foundation of China (Nos. 70533050 and 50674089) for their support of this project
文摘For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test stand to carry out model tests of similar materials in order to improve the effect of gas drainage from low protected seams and to measure the movement and deformation of coal-rock mass using a method of non-contact close-range photogrammetry.Our results show that 1) using paraffin melting to take the place of coal seam mining can satisfy the mining conditions of a protective seam;2) coal-rock mass under goafs has an upward movement after the protective seam has been mined,causing floor heaving;3) low protected seams become swollen and deformed,providing a good pressure-relief effect and causing the coal-rock mass under both sides of coal pillars to become deformed by compression and 4) the evolution of permeability of low protected seams follows the way of initial values→a slight decrease→a great increase→stability→final decrease.Simultaneously,the coefficient of air permeability increased at a decreasing rate with an increase in interlayer spacing.
基金financial support from China Scholarship Council(CSC)under the Grant CSC No.201406460041financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC 402318)+4 种基金the Institut de Recherche Robert-Sauvéen Santéet en Sécuritédu Travail(IRSST 2013-0029)Fonds de Recherche du Québec-Nature et Technologies(FRQNT 2015-MI-191676)the industrial partners of Research Institute on Mines and Environment(RIME UQAT-Polytechnique)The financial support from the National Science and Technology Support Program of China(No.2013BAB02B02)the Scientific Research Fund of Beijing General Research Institute of Mining and Metallurgy of China(No.YJ201507)
文摘Mitchell's solution is commonly used to determine the required strength of vertically exposed cemented backfill in mines. Developed for drained backfill, Mitchell model assumed a zero friction angle for the backfill. Physical model tests were performed. Good agreements were obtained between the required strengths predicted by the analytical solution and experimental results. However, it is well-known that zero friction angle can only be possible in terms of total stresses when geomaterials are submitted to unconsolidated and undrained conditions. A revisit to Mitchell's physical model tests reveals that both the laboratory tests performed for obtaining the shear strength parameters of the cemented backfill and the box stability tests were conducted under a condition close to undrained condition. This explains well the good agreement between Mitchell's solution and experimental results. Good agreements are equally obtained between Mitchell's experimental results and FLAC3 D numerical modeling of shortterm stability analyses of exposed cemented backfill.
基金Supported by the National Defense Foundation under Grant No.51414030204CB0109
文摘Physical testing of large-scale ship models at sea is a new experimental method.It is a cheap and reliable way to research the environment adaptability of a ship in complex and extreme wave conditions.It is necessary to have a stable experimental system for the test.Since the experimental area is large, a remote control system and a telemetry system are essential, and were designed by the authors.An experiment was conducted on the Songhuajiang River to test the systems.The relationship between the model's speed and its electromotor's revolutions was also measured during the model test.The results showed that the two systems make it possible to carry out large-scale model tests at sea.
基金supported by the Jiangsu Natural Science Foundation of China(Grant No.BK2012477)the Science Research Foundation of Nanjing Institute of Technology(CKJA201505,JCYJ201618)
文摘Adopting a soft site model built on soft interlayer soil foundation,a shaking table test for soft interlayer soil-isolated structure interaction is conducted to investigate the seismic response of isolated structure on soft site,and analyze its isolation effect.Test results show that the test can reflect the earthquake response characteristics of isolated structure on soft site.It is on soft site that the dynamic characteristics of isolated structure,acceleration magnification factor(AMF)of isolated structure and isolation efficiency of the isolation layer differ from those on rigid foundation with an soil-structure interaction(SSI)effect,represented by the reduction in fundamental vibration frequency of isolated structure and the increase of damping ratio with changes of the SSI effect.SSI can either increase or decrease AMF of isolated structure on soft site,depending on the characteristics of earthquake motion input.Furthermore,the isolation efficiency of isolation layer on soft site is decreased with the SSI effect,which is related to the peak ground acceleration(PGA)and the characteristics of earthquake motion input.
文摘Over the past century,the safety of dams has gradually attracted attention from all parties.Research on the dynamic response and damage evolution of dams under extreme loads is the basis of dam safety issues.In recent decades,scholars have studied the responses of dams under earthquake loads,but there is still much room for improvement in experimental and theoretical research on small probability loads such as explosions.In this paper,a 50-m-high concrete gravity dam is used as a prototype dam,and a water explosion model test of a 2.5-m-high concrete gravity dam is designed.The water pressure and the acceleration response of the dam body in the test are analysed.The pressure characteristics and dynamic response of the dam body are assessed.Taking the dam damage test as an example,a numerical model of concrete gravity dam damage is established,and the damage evolution of the dam body is analysed.By combining experiments and numerical simulations,the damage characteristics of the dam body under the action of different charge water explosions are clarified.The integrity of the dam body is well maintained under the action of a small-quantity water explosion,and the dynamic response of the dam body is mainly caused by the shock wave.Both the shock wave and the bubble pulsation cause the dam body to accelerate,and the peak acceleration of the dam body under the action of the bubble pulsation is only one percent of the peak acceleration of the dam body under the action of the shock wave.When subjected to explosions in large quantities of water,the dam body is seriously damaged.Under the action of a shock wave,the dam body produces a secondary acceleration response,which is generated by an internal interaction after the dam body is damaged.The damage evolution process of the dam body under the action of a large-scale water explosion is analysed,and it is found that the shock wave pressure of the water explosion causes local damage to the dam body facing the explosion.After the peak value of the shock wave,the impulse continues to act on the dam body,causing cumulative damage and damage inside the dam body.
基金provided by the Program for New Century Excellent Talents in University (No. NCET-06-0477)the Independent Research Project of the State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology (No. SKLCRSM09X01)the Fundamental Research Funds for the Central Universities
文摘In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring method was proposed in this study,and the major steps of the monitoring method include:firstly,time-series images of the similarity model in the test were obtained by a camera,and secondly,measuring points marked as artificial targets were automatically tracked and recognized from time-series images.Finally,the real-time plane displacement field was calculated by the fixed magnification between objects and images under the specific conditions.And then the application device of the method was designed and tested.At the same time,a sub-pixel location method and a distortion error model were used to improve the measuring accuracy.The results indicate that this method may record the entire test,especially the detailed non-uniform deformation and sudden deformation.Compared with traditional methods this method has a number of advantages,such as greater measurement accuracy and reliability,less manual intervention,higher automation,strong practical properties,much more measurement information and so on.
文摘The log float technology from timber depot at the reservoir to log feeding rolls was studied by model tests. The model test was taken with the rule of gravitation similitude and ratio of 1∶10. Main parameters, like the amount of tug boats, hydro-accelerators and the structure of feeding rolls, were determined. The more suitable float process is put forward and the reliable basis for the design is supplied.
基金supported by the 2018 Major Science and Technology Project of China Railway Construction Corporation Limited(No.2018-A01)the National Natural Science Foundation of China(No.51978588).
文摘To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and the dynamic response of the subgrade structure was monitored.The dynamic response attenuation characteristics along the depth direction of the subgrade were compared,and the distribution characteristics of the dynamic stress on the surface of the subgrade along the longitudinal direction of the line were analyzed.The critical dynamic stress and cumulative deformation were used as indicators to evaluate the long-term dynamic stability of the subgrade.Results show that water has a certain effect on the dynamic characteristics of the subgrade,and the dynamic stress and acceleration increase with the water content.With the dowel steel structure set between the rail-bearing beams,stress concentration at the end of the loaded beam can be prevented,and the diffusion distance of the dynamic stress along the longitudinal direction increases.The dynamic stress measured in the subgrade bed range is less than 1/5 of the critical dynamic stress.The postconstruction settlement of the subgrade after similarity ratio conversion is 3.94 mm and 7.72 mm under natural and rainfall conditions,respectively,and both values are less than the 30 mm limit,indicating that the MLS maglev subgrade structure has good long-term dynamic stability.
文摘Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and settlement of the embankments were analyzed, and the obtained results can be used as a reference to field construction.
文摘Zhongshan Bridge is a kind of steel arch bridge with a particular space-combined structure. The rationality of design, accuracy of theoretical calculation and reliability of transportation were studied. Its design, FEM calculation of stresses and strains, and model test were introduced in detail. The theoretical analysis and model test verified that the design was reliable and safe. The simulated stresses, rigidity and stability, which are based on the selected loading system and cross-section geometry, satisfy the related design standards. Some of the issues that need to be considered in the real bridge construction were also discussed.
文摘Settlement control of high-speed railways is a key technology in embankment engineering. In order to reveal the engineering characteristics of the deep, completely decomposed granite soil in the Hainan East Ring Railway, four groups of centrifuge model tests were conducted. We studied the settlement properties, under the embankment action, of untreated subsoil, subsoil treated by dynamic compaction, and subsoil reinforced with cement-mixed piles. In particular, we examined the relationship between settlement and time, including the settlement during and after construction. The results show that the Weibull model can describe the relationship between embankment settlement and time well, and that the post-construction settlements of the subsoil meet the requirements of the relevant code. Among the two foundation treatment measures, dynamic compaction is more effective than reinforcement with cement-mixed piles. The tested pressure on the contact surface between embankment and subsoil was obviously different from the commonly used calculated values.
基金Supported by the National Natural Science Foundation of China under Grants Nos 11175093,11222545,11435006,and 11375092the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20124306110001the K.C.Wong Magna Fund of Ningbo University
文摘The Sandage Loeb (SL) test is a direct measurement of the cosmic expansion by probing the redshift drifts of quasi-stellar objects in the 'redshift desert' of 2 〈 z 〈 5. In this work, we investigate its constraints on the unified dark energy and dark matter models including the generalized Chaplygin gas and the superfluid Chaplygin gas. In addition, type Ia supernovae (SNIa) data and the distance ratios derived from the cosmic microwave background radiation and baryon acoustic oscillation observations (CMB/BAO) are also used. We find that the mock SL data gives the tightest constraints on the model parameters and it can help to reduce the parameter regions allowed by the present SNIa+CMB/BAO by about 75% when all datasets considered are combined. Thus the SL test is a worthy and long awaited measurement to probe effectively the cosmic expanding history and the properties of dark energy.