Manipulation of terahertz wave by metasurfaces has shown tremendous potential in developing compact and functional terahertz optical devices.Here,we propose complementary bilayer metasurfaces for enhanced terahertz wa...Manipulation of terahertz wave by metasurfaces has shown tremendous potential in developing compact and functional terahertz optical devices.Here,we propose complementary bilayer metasurfaces for enhanced terahertz wave amplitude and phase manipulation.The metasurfaces are composed of one layer of metal cut-wire arrays and one layer of their complementary aperture arrays separated by a dielectric spacer.Through the near-field coupling between transverse magnetic resonances in the metal apertures and electric resonances in the metal cut-wires,the structures can manipulate the cross polarization conversion and phase dispersion of terahertz wave.Particularly,the designed metasurfaces demonstrate a phase delay of 180°between two orthogonal axes with the same transmission amplitude between 0.70 and 1.0 THz,enabling a 45°broadband polarization conversion.When the metal cut-wires are rotated with respect to the apertures or the thickness of the dielectric spacer is changed,the amplitude and phase dispersion of the transmitted terahertz wave can be tuned.Such complementary coupled bilayer metasurfaces offer a new method to control the amplitude and phase dispersion of terahertz wave and promise great potential for applications in terahertz meta-devices.展开更多
We investigate computationally the attenuation and reflection of Terahertz (THz) wave using targets coated with plasmas. The simulators are the Wentzel-Kramer-Brillouin (WKB) method and finite-difference timedoma...We investigate computationally the attenuation and reflection of Terahertz (THz) wave using targets coated with plasmas. The simulators are the Wentzel-Kramer-Brillouin (WKB) method and finite-difference timedomain (FDTD) method. The relation between the frequency of the incident electromagnetic (EM) wave and the attenuation caused by unmagnitized plasma is analyzed. The results demonstrate that the amount of absorbed power is a decreasing function of the EM wave frequency and the plasma collision frequency. For THz band incident wave, the attenuation that is caused by plasma is small when the plasma has common density and the collision frequency. This conclusion has fine applying foreground for plasma anti stealth.展开更多
The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living orga...The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living organisms.It irradiates a biological sample placed in a 30×30×50 cm^(3)cell with electromagnetic waves in the 3.15-mm-wavelength region(with an output of≥1 W)and analyzes the temperature change of the sample.A vacuum electronic device-based coupled-cavity backward-wave oscillator converts the electron energy of the electron beam into radiofrequency(RF)energy and radiates it to the target through an antenna,increasing the temperature through the absorption of RF energy in the skin.The system causes pain and ultimately reduces combat power.A cell-type continuous electromagnetic radiation system consisting of four parts—an electromagnetic-wave generator,a highvoltage power supply,a test cell,and a system controller—generates an RF signal of≥1 W in a continuous waveform at a 95-GHz center frequency,as well as a chemical solution with a dielectric constant similar to that of the skin of a living organism.An increase of 5°C lasting approximately 10 s was confirmed through an experiment.展开更多
针对现有的双局域网(LAN)太赫兹无线局域网(Dual-LAN THz WLAN)相关介质访问控制(MAC)协议中存在的某些节点会在多个超帧内重复发送相同的信道时隙请求帧以申请时隙资源以及网络运行的一些时段存在空闲时隙等问题,提出一种基于自发数据...针对现有的双局域网(LAN)太赫兹无线局域网(Dual-LAN THz WLAN)相关介质访问控制(MAC)协议中存在的某些节点会在多个超帧内重复发送相同的信道时隙请求帧以申请时隙资源以及网络运行的一些时段存在空闲时隙等问题,提出一种基于自发数据传输的高效MAC协议——SDTE-MAC(high-Efficiency MAC protocol based on Spontaneous Data Transmission)。SDTE-MAC通过让各节点都维护一张或多张时间单元链表,使各节点与其余节点在网络运行时间上达到同步,从而获悉各节点应该在信道空闲时隙的什么位置开始发送数据帧,优化了传统的信道时隙分配和信道剩余时隙再分配的流程,提高了网络吞吐量和信道时隙利用率,降低了数据时延,能够进一步提升双LAN太赫兹无线局域网的性能。仿真结果表明,网络饱和时,相较于AHT-MAC(Adaptive High Throughout multi-pan MAC protocol)中的N-CTAP(Normal Channel Time Allocation Period)时段时隙资源分配新机制以及自适应缩短超帧时段机制,SDTE-MAC的MAC层吞吐量提升了9.2%,信道时隙利用率提升了10.9%,数据时延降低了22.2%。展开更多
基金supported in part by the National Research Foundation, Prime Minister’s Office,Singapore under its Competitive Research Program (CRP Award No. NRF-CRP10-2012-04)in part by EDB, Singapore with grant No. S15-1322-IAF OSTIn-SIAG
文摘Manipulation of terahertz wave by metasurfaces has shown tremendous potential in developing compact and functional terahertz optical devices.Here,we propose complementary bilayer metasurfaces for enhanced terahertz wave amplitude and phase manipulation.The metasurfaces are composed of one layer of metal cut-wire arrays and one layer of their complementary aperture arrays separated by a dielectric spacer.Through the near-field coupling between transverse magnetic resonances in the metal apertures and electric resonances in the metal cut-wires,the structures can manipulate the cross polarization conversion and phase dispersion of terahertz wave.Particularly,the designed metasurfaces demonstrate a phase delay of 180°between two orthogonal axes with the same transmission amplitude between 0.70 and 1.0 THz,enabling a 45°broadband polarization conversion.When the metal cut-wires are rotated with respect to the apertures or the thickness of the dielectric spacer is changed,the amplitude and phase dispersion of the transmitted terahertz wave can be tuned.Such complementary coupled bilayer metasurfaces offer a new method to control the amplitude and phase dispersion of terahertz wave and promise great potential for applications in terahertz meta-devices.
基金the National Natural Science Foundation of China (60771017)the China Postdoctoral ScienceFoundation (20060390272)
文摘We investigate computationally the attenuation and reflection of Terahertz (THz) wave using targets coated with plasmas. The simulators are the Wentzel-Kramer-Brillouin (WKB) method and finite-difference timedomain (FDTD) method. The relation between the frequency of the incident electromagnetic (EM) wave and the attenuation caused by unmagnitized plasma is analyzed. The results demonstrate that the amount of absorbed power is a decreasing function of the EM wave frequency and the plasma collision frequency. For THz band incident wave, the attenuation that is caused by plasma is small when the plasma has common density and the collision frequency. This conclusion has fine applying foreground for plasma anti stealth.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2021M2E8A1038938,No.NRF-2021R1F1A1048374,and No.NRF-2016R1A3B1908336)supported by a grant of the Korea Institute of Radiological and Medical Sciences(KIRAMS),funded by the Ministry of Science and ICT(MSIT),Republic of Korea(No.50051—2021,No.50623—2021)。
文摘The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living organisms.It irradiates a biological sample placed in a 30×30×50 cm^(3)cell with electromagnetic waves in the 3.15-mm-wavelength region(with an output of≥1 W)and analyzes the temperature change of the sample.A vacuum electronic device-based coupled-cavity backward-wave oscillator converts the electron energy of the electron beam into radiofrequency(RF)energy and radiates it to the target through an antenna,increasing the temperature through the absorption of RF energy in the skin.The system causes pain and ultimately reduces combat power.A cell-type continuous electromagnetic radiation system consisting of four parts—an electromagnetic-wave generator,a highvoltage power supply,a test cell,and a system controller—generates an RF signal of≥1 W in a continuous waveform at a 95-GHz center frequency,as well as a chemical solution with a dielectric constant similar to that of the skin of a living organism.An increase of 5°C lasting approximately 10 s was confirmed through an experiment.
文摘针对现有的双局域网(LAN)太赫兹无线局域网(Dual-LAN THz WLAN)相关介质访问控制(MAC)协议中存在的某些节点会在多个超帧内重复发送相同的信道时隙请求帧以申请时隙资源以及网络运行的一些时段存在空闲时隙等问题,提出一种基于自发数据传输的高效MAC协议——SDTE-MAC(high-Efficiency MAC protocol based on Spontaneous Data Transmission)。SDTE-MAC通过让各节点都维护一张或多张时间单元链表,使各节点与其余节点在网络运行时间上达到同步,从而获悉各节点应该在信道空闲时隙的什么位置开始发送数据帧,优化了传统的信道时隙分配和信道剩余时隙再分配的流程,提高了网络吞吐量和信道时隙利用率,降低了数据时延,能够进一步提升双LAN太赫兹无线局域网的性能。仿真结果表明,网络饱和时,相较于AHT-MAC(Adaptive High Throughout multi-pan MAC protocol)中的N-CTAP(Normal Channel Time Allocation Period)时段时隙资源分配新机制以及自适应缩短超帧时段机制,SDTE-MAC的MAC层吞吐量提升了9.2%,信道时隙利用率提升了10.9%,数据时延降低了22.2%。