期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Synthesis of mesoporous carbon as electrode material for supercapacitor by modified template method 被引量:3
1
作者 赵家昌 赖春艳 +1 位作者 戴扬 解晶莹 《Journal of Central South University of Technology》 EI 2005年第6期647-652,共6页
The pore structures and electrochemical performances of mesoporous carbons prepared by silica sol template method as electrode material for supercapacitor were investigated. The mean pore size and mass specific capaci... The pore structures and electrochemical performances of mesoporous carbons prepared by silica sol template method as electrode material for supercapacitor were investigated. The mean pore size and mass specific capacitance of the mesoporous carbons increase with the increase of mass ratio of silica sol to carbon source (glucose). A modified template method, combining silica sol template method and ZnCl2 chemical activation method, was proposed to improve the mass specific capacitance of the mesoporous carbon with an improved BET surface area. The correlation of rate capability and pore structure was studied by constant current discharge and electrochemical impedance spectroscopy. A commercially available microporous carbon was used for comparison. The result shows that mesoporous carbon with a larger pore size displays a higher rate capability. Mesoporous carbon synthesized by modified template method has both high mass specific capacitance and good rate capability. 展开更多
关键词 SUPERCAPACITOR mesoporous carbon modified template method electrochemical performance SYNTHESIS
在线阅读 下载PDF
Template synthesis of copper azide primary explosive through Cu2O@HKUST-1 core-shell composite prepared by “bottle around ship” method 被引量:1
2
作者 Xu-wen Liu Yan Hu +4 位作者 Jia-heng Hu Jia-xin Su Cai-min Yang Ying-hua Ye Rui-qi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期99-111,共13页
Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesi... Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials. 展开更多
关键词 Composite energetic materials Copper azide CARBONIZATION Template method Core-shell composite Electrostatic safety
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部