To improve the adsorption properties of chemically modified chitosan, the chelating resin of salicylal chitosan Schiff bases was prepared by the template cross-linking method using Cu(Ⅱ) as template ion and ethylen...To improve the adsorption properties of chemically modified chitosan, the chelating resin of salicylal chitosan Schiff bases was prepared by the template cross-linking method using Cu(Ⅱ) as template ion and ethylene glycol bisglycidyl ether as cross-linking agent in microwave, and was characterized by IR. The adsorption capacity and selectivity coefficient of the chemically modified chitosan for Cu(Ⅱ), Fe(Ⅲ) and Zn(Ⅱ) were investigated, respectively. The results show that the adsorption capacity of the resin 2.73 mmol/g for Cu(Ⅱ) is bigger than that for other two metal ions, 0.22 mmol/g for Fe(Ⅲ), and 0.42 mmol/g for Zn(Ⅱ), and the selectivity coefficients are as follows: KCu(Ⅱ)/Fe(Ⅲ)=12.4, KCu(Ⅱ)/Zn(Ⅱ)=6.5.展开更多
Manganese compound with evident toxicity is widely employed as the contrast medium for clinicalexaminations such as magnetic resonance imaging(MRI).In the present work,a feasible way with the applica-tion of vacuum im...Manganese compound with evident toxicity is widely employed as the contrast medium for clinicalexaminations such as magnetic resonance imaging(MRI).In the present work,a feasible way with the applica-tion of vacuum impregnation and rotary evaporation was proposed to introduce manganese chloride hydrate intothe inner cavities of template - synthesized carbon nanotubes(CNTs),and then a process of alkali treatmentwas used to liberate the loaded CNTs from the template.It is notable that the alkali attack in the presence ofresidual oxygen also resulted in a series of changes in chemical compositions of guest substances,and the ulti-mate compound of manganese was found to be manganese oxide(Mn3O4) by X-ray diffraction and transmissionelectron microscopy.Determinations of energy dispersive spectrum under scanning electron microscopy showeda high-content filling(more than 50 wt%) of Mn3O4 in the loaded CNTs.This work developed a feasible andconvenient way for the encapsulation of guest substances to reduce bio-toxic effects.展开更多
文摘To improve the adsorption properties of chemically modified chitosan, the chelating resin of salicylal chitosan Schiff bases was prepared by the template cross-linking method using Cu(Ⅱ) as template ion and ethylene glycol bisglycidyl ether as cross-linking agent in microwave, and was characterized by IR. The adsorption capacity and selectivity coefficient of the chemically modified chitosan for Cu(Ⅱ), Fe(Ⅲ) and Zn(Ⅱ) were investigated, respectively. The results show that the adsorption capacity of the resin 2.73 mmol/g for Cu(Ⅱ) is bigger than that for other two metal ions, 0.22 mmol/g for Fe(Ⅲ), and 0.42 mmol/g for Zn(Ⅱ), and the selectivity coefficients are as follows: KCu(Ⅱ)/Fe(Ⅲ)=12.4, KCu(Ⅱ)/Zn(Ⅱ)=6.5.
文摘Manganese compound with evident toxicity is widely employed as the contrast medium for clinicalexaminations such as magnetic resonance imaging(MRI).In the present work,a feasible way with the applica-tion of vacuum impregnation and rotary evaporation was proposed to introduce manganese chloride hydrate intothe inner cavities of template - synthesized carbon nanotubes(CNTs),and then a process of alkali treatmentwas used to liberate the loaded CNTs from the template.It is notable that the alkali attack in the presence ofresidual oxygen also resulted in a series of changes in chemical compositions of guest substances,and the ulti-mate compound of manganese was found to be manganese oxide(Mn3O4) by X-ray diffraction and transmissionelectron microscopy.Determinations of energy dispersive spectrum under scanning electron microscopy showeda high-content filling(more than 50 wt%) of Mn3O4 in the loaded CNTs.This work developed a feasible andconvenient way for the encapsulation of guest substances to reduce bio-toxic effects.