The reduction behavior of CuO supported on ZrO2 and Al2O3 has been investigated by temperature-programmed reduction (TPR) and TG techniques. The oaldation activity of CO on the catalysts has also been studied. It has ...The reduction behavior of CuO supported on ZrO2 and Al2O3 has been investigated by temperature-programmed reduction (TPR) and TG techniques. The oaldation activity of CO on the catalysts has also been studied. It has been found that there is obvious difference between TPR profiles of ZrO2 supported CuO and Al2O3 supported catalysts, the monolayer CuO on ZrO2 is easily reduced, and which leads to a dramatic increase in oxidation activity.展开更多
The oxygen storage material (OSM) Ce0.35Zr0.55Y0.1O1.95 was prepared by co-precipitation routine and studied by means of TEM, XRD, XPS, BET, H2-TPR and oxygen storage capacity (OSC) measurements. The results indicated...The oxygen storage material (OSM) Ce0.35Zr0.55Y0.1O1.95 was prepared by co-precipitation routine and studied by means of TEM, XRD, XPS, BET, H2-TPR and oxygen storage capacity (OSC) measurements. The results indicated that this material possessed plenty of Ce3+ and lattice oxygen vacancy (percentage of Ce3+ was 59.6%) and high cerium atom utilization ratio (80.04%). The porous material was with an average BET surface area of 97 m2·g-1 and pore volume of 0.26 mL·g-1. After aged at 1 000 ℃ in air for 5 h, the sample still possessed plenty of Ce3+ and lattice oxygen vacancy (percentage of Ce3+ was 57.1%), and showed high cerium atom utilization ratio (78.25%), and high thermal stability.展开更多
文摘The reduction behavior of CuO supported on ZrO2 and Al2O3 has been investigated by temperature-programmed reduction (TPR) and TG techniques. The oaldation activity of CO on the catalysts has also been studied. It has been found that there is obvious difference between TPR profiles of ZrO2 supported CuO and Al2O3 supported catalysts, the monolayer CuO on ZrO2 is easily reduced, and which leads to a dramatic increase in oxidation activity.
文摘The oxygen storage material (OSM) Ce0.35Zr0.55Y0.1O1.95 was prepared by co-precipitation routine and studied by means of TEM, XRD, XPS, BET, H2-TPR and oxygen storage capacity (OSC) measurements. The results indicated that this material possessed plenty of Ce3+ and lattice oxygen vacancy (percentage of Ce3+ was 59.6%) and high cerium atom utilization ratio (80.04%). The porous material was with an average BET surface area of 97 m2·g-1 and pore volume of 0.26 mL·g-1. After aged at 1 000 ℃ in air for 5 h, the sample still possessed plenty of Ce3+ and lattice oxygen vacancy (percentage of Ce3+ was 57.1%), and showed high cerium atom utilization ratio (78.25%), and high thermal stability.