期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Ideal Bi‑Based Hybrid Anode Material for Ultrafast Charging of Sodium‑Ion Batteries at Extremely Low Temperatures
1
作者 Jie Bai Jian Hui Jia +2 位作者 Yu Wang Chun Cheng Yang Qing Jiang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期152-167,共16页
Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability o... Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current. 展开更多
关键词 Bi nanoparticles High temperature shock High-rate activation Ultrafast charging Low-temperature sodium-ion batteries
在线阅读 下载PDF
Analysis of thermal-mechanical coupled characteristics of vehicle twin-tube shock absorber
2
作者 么鸣涛 龙凯 贺李平 《Journal of Beijing Institute of Technology》 EI CAS 2014年第2期203-209,共7页
A comprehensive model that included mechanical dynamics of the shock absorber coupled with its thermal properties was proposed innovatively.Moreover a thermal-mechanical coupled model which reflected the closed-loop p... A comprehensive model that included mechanical dynamics of the shock absorber coupled with its thermal properties was proposed innovatively.Moreover a thermal-mechanical coupled model which reflected the closed-loop positive feedback system was established by using MATLAB/SIMULINK,and some curves of shock absorber temperature rising characteristic were obtained by simulation &computation under several operating modes and different parameters conditions.Research results show that:shock absorber design parameters,external excitations,and thermo-physical properties parameter,such as oil density have effect on the shock absorber temperature rising characteristic.However other thermo-physical properties parameters,such as oil specific heat,cylinder density,cylinder specific heat,and cylinder thermal conductivity,have no effect on it.The results may be used for studying reliability design of the shock absorber. 展开更多
关键词 shock absorber thermal-mechanical coupled model temperature rising closed-loop positive feedback
在线阅读 下载PDF
Recent progress on impact induced reaction mechanism of reactive alloys
3
作者 Yansong Yang Chuanting Wang +5 位作者 Yuanpei Meng Yue Ma Lei Guo Yuan He Zhichao Sun Yong He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期69-95,共27页
In recent years,in order to improve the destructive effectiveness of munitions,the use of new types of destructive elements is an important way to improve destructive effectiveness.As a new type of reactive material,r... In recent years,in order to improve the destructive effectiveness of munitions,the use of new types of destructive elements is an important way to improve destructive effectiveness.As a new type of reactive material,reactive alloy contains a large portion of reactive metal elements(Al,Mg,Ti,Zr,etc.),which breaks up under high-velocity impact conditions,generating a large number of high-temperature combustible fragments,which undergo a violent combustion reaction with air.Compared with traditional metal polymers(Al-PTFE)and other reactive composites,it has higher density and strength,excellent mechanical properties and broader application prospects.Currently,researchers have mainly investigated the impact energy release mechanism of reactive alloys through impact tests,and found that there are several important stages in the process of the material from fragmentation to reaction,i.e.,impact fragmentation of the material,rapid heating and combustion reaction.This paper focuses on three problems that need to be solved in the impact-induced energy release process of reactive alloys,namely:the fragmentation mechanism and size distribution law of the fragments produced by the impact of the material on the target,the relationship between the transient temperatures and the size of the fragments,and the reaction temperatures and size thresholds of the fragments to undergo the chemical reaction.The current status of the research of the above problems is reviewed,some potential directions to reveal the impact induced reaction mechanism of reactive alloy is discussed. 展开更多
关键词 Reactive alloys IMPACT FRAGMENTATION Mass and size distribution shock temperature rise Adiabatic shear COMBUSTION
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部