期刊文献+
共找到229,235篇文章
< 1 2 250 >
每页显示 20 50 100
Physical Modeling of Reconfigurable Intelligent Surface for Channel Modeling
1
作者 MiaoWei Dou Jianwu +1 位作者 Cui Yijun Yang Zhenyu 《China Communications》 2025年第2期128-142,共15页
In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In... In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In the context of important physical characteristics of the backscattering polarization of RIS,the modeling of the RIS wireless channel requires a tradeoff between complexity and accuracy,as well as usability and simplicity.For channel modeling of RIS systems,RIS is modelled as multi-equivalent virtual base stations(BSs)induced by multi polarized electromagnetic waves from different incident directions.The comparison between test and simulation results demonstrates that the proposed algorithm effectively captures the key characteristics of the general RIS element polarization physical model and provides accurate results. 展开更多
关键词 channel modeling map-based hybrid channel model polarized model Reconfigurable intelligent surface(RIS)
在线阅读 下载PDF
Solubility and Thermodynamic Modeling of 3⁃Nitro⁃1,2,4⁃triazole⁃5⁃one(NTO)in Different Binary Solvents
2
作者 GUO Hao-qi YANG Yu-lin 《含能材料》 北大核心 2025年第3期295-303,共9页
Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging f... Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ). 展开更多
关键词 3-nitro-l 2 4-triazole-5-one(NTO) SOLUBILITY thermodynamic models apparent thermodynamic analysis
在线阅读 下载PDF
Reactive transport modeling constraints on the complex genesis of a lacustrine dolomite reservoir:A case from the Eocene Qaidam Basin,China 被引量:1
3
作者 Ying Xiong Bo Liu +5 位作者 Xiu-Cheng Tan Zheng-Meng Hou Jia-Shun Luo Ya-Chen Xie Kai-Bo Shi Kun-Yu Wu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2240-2256,共17页
Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood.... Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood.This paper presents a case study of the Eocene Qaidam Basin that combines RTM results with petrological and mineralogical evidence.The results show that the Eocene Xiaganchaigou Formation is characterized by mixed siliciclastic-carbonate-evaporite sedimentation in a semiclosed saline lacustrine environment.Periodic evaporation and salinization processes during the syngeneticpenecontemporaneous stage gave rise to the replacive genesis of dolomites and the cyclic enrichment of dolomite in the middle-upper parts of the meter-scale depositional sequences.The successive change in mineral paragenesis from terrigenous clastics to carbonates to evaporites was reconstructed using RTM simulations.Parametric uncertainty analyses further suggest that the evaporation intensity(brine salinity)and particle size of sediments(reactive surface area)were important rate-determining factors in the dolomitization,as shown by the relatively higher reaction rates under conditions of higher brine salinity and fine-grained sediments.Combining the simulation results with measured mineralogical and reservoir physical property data indicates that the preservation of original intergranular pores and the generation of porosity via replacive dolomitization were the major formation mechanisms of the distinctive lacustrine dolomite reservoirs(widespread submicron intercrystalline micropores)in the Eocene Qaidam Basin.The results confirm that RTM can be effectively used in geological studies,can provide a better general understanding of the dolomitizing fluid-rock interactions,and can shed light on the spatiotemporal evolution of mineralogy and porosity during dolomitization and the formation of lacustrine dolomite reservoirs. 展开更多
关键词 Reactive transport modeling Lacustrine dolomite Mineralogy and porosity evolution Reservoir genesis
在线阅读 下载PDF
Predicting the probability distribution of Martian rocks mechanical property based on microscale rock mechanical experiments and accurate grain-based modeling 被引量:1
4
作者 Shuohui Yin Yingjie Wang Jingang Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1327-1339,共13页
The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut... The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples. 展开更多
关键词 Probability distribution Martian rocks Microscale rock mechanic experiment Nanoindentation Accurate grain-based modeling
在线阅读 下载PDF
Artificial intelligence-driven radiomics study in cancer:the role of feature engineering and modeling 被引量:1
5
作者 Yuan-Peng Zhang Xin-Yun Zhang +11 位作者 Yu-Ting Cheng Bing Li Xin-Zhi Teng Jiang Zhang Saikit Lam Ta Zhou Zong-Rui Ma Jia-Bao Sheng Victor CWTam Shara WYLee Hong Ge Jing Cai 《Military Medical Research》 SCIE CAS CSCD 2024年第1期115-147,共33页
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of... Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research. 展开更多
关键词 Artificial intelligence Radiomics Feature extraction Feature selection modeling INTERPRETABILITY Multimodalities Head and neck cancer
在线阅读 下载PDF
Total ionizing dose effect modeling method for CMOS digital-integrated circuit
6
作者 Bo Liang Jin-Hui Liu +3 位作者 Xiao-Peng Zhang Gang Liu Wen-Dan Tan Xin-Dan Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期32-46,共15页
Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID eff... Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID effects in complementary metaloxide semiconductor(CMOS)digital ICs based on the input/output buffer information specification(IBIS)was proposed.The digital IC was first divided into three parts based on its internal structure:the input buffer,output buffer,and functional area.Each of these three parts was separately modeled.Using the IBIS model,the transistor V-I characteristic curves of the buffers were processed,and the physical parameters were extracted and modeled using VHDL-AMS.In the functional area,logic functions were modeled in VHDL according to the data sheet.A golden digital IC model was developed by combining the input buffer,output buffer,and functional area models.Furthermore,the golden ratio was reconstructed based on TID experimental data,enabling the assessment of TID effects on the threshold voltage,carrier mobility,and time series of the digital IC.TID experiments were conducted using a CMOS non-inverting multiplexer,NC7SZ157,and the results were compared with the simulation results,which showed that the relative errors were less than 2%at each dose point.This confirms the practicality and accuracy of the proposed modeling method.The TID effect model for digital ICs developed using this modeling technique includes both the logical function of the IC and changes in electrical properties and functional degradation impacted by TID,which has potential applications in the design of radiation-hardening tolerance in digital ICs. 展开更多
关键词 CMOS digital-integrated circuit Total ionizing dose IBIS model Behavior-physical hybrid model Physical parameters
在线阅读 下载PDF
Litterfall production modeling based on climatic variables and nutrient return from stands of Eucalyptus grandis Hill ex Maiden and Pinus taeda L.
7
作者 Andrés Baietto Andrés Hirigoyen +1 位作者 Jorge Hernández Amabelia del Pino 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期26-36,共11页
Native grasslands in the Pampas of South America are increasingly being replaced by Eucalyptus and Pinus stands.The short rotation regimes used for the stands require high nutrient levels,with litterfall being a major... Native grasslands in the Pampas of South America are increasingly being replaced by Eucalyptus and Pinus stands.The short rotation regimes used for the stands require high nutrient levels,with litterfall being a major source of nutrient return.To model the litterfall production using climatic variables and assess the nutrient return in 14-year-old Eucalyptus grandis and Pinus taeda stands,we measured litter production over 2 years,using conical litter traps,and monitored climatic variables.Mean temperature,accumulated precipitation,and mean maximum vapor pres-sure deficit at the seasonal level influenced litterfall produc-tion by E.grandis;seasonal accumulated precipitation and mean maximum temperature affected litterfall by P.taeda.The regression tree modeling based on these climatic vari-ables had great accuracy and predictive power for E.grandis(N=33;MAE(mean absolute error)=0.65;RMSE(root mean square error)=0.91;R^(2)=0.71)and P.taeda(N=108;MAE=1.50;RMSE=1.59;R^(2)=0.72).The nutrient return followed a similar pattern to litterfall deposition,as well as the order of importance of macronutrients(E.grandis:Ca>N>K>Mg>P;P.taeda:N>Ca>K>Mg>P)and micronutrients(E.grandis and P.taeda:Mn>Fe>Zn>Cu)in both species.This study constitutes a first approximation of factors that affect litterfall and nutrient return in these systems. 展开更多
关键词 AFFORESTATION LITTERFALL Nutrient recycling Climate modeling MYRTACEAE PINACEAE
在线阅读 下载PDF
Two-temperature modeling of lamellar cathode arc
8
作者 李渊博 刘兴 叶韬 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期120-139,共20页
A three-dimensional, two-temperature(2T) model of a lamellar cathode arc is constructed,drawing upon the conservation equations for mass, momentum, electron energy, and heavy particle energy, in addition to Maxwell... A three-dimensional, two-temperature(2T) model of a lamellar cathode arc is constructed,drawing upon the conservation equations for mass, momentum, electron energy, and heavy particle energy, in addition to Maxwell's equations. The model aims to elucidate how the physical properties of electrons and heavy particles affect heat transfer and fluid flow in a lamellar cathode arc. This is achieved by solving and comparing the fields of electron temperature,heavy particle temperature, fluid flow, current density, and Lorentz force distribution under varying welding currents. The results show that the guiding effect of the lamellar cathode on current density, the inertial drag effect of moving arc, and the attraction effect of Lorentz force at the lamellar cathode tip primarily govern the distribution of the arc's physical fields. The guiding effect localizes the current density to the front end of the lamellar cathode, particularly where the discharge gap is minimal. Both the inertial drag effect and the attraction effect of Lorentz force direct arc flow toward its periphery. Under the influence of the aforementioned factors, the physical fields of the lamellar cathode arc undergo expansion and shift counter to the arc's direction of motion. A reduction in welding current substantially weakens the guiding effect,causing the arc's physical fields to deviate further in the direction opposite to the arc motion. In comparison with a cylindrical cathode arc, the physical fields of the lamellar cathode arc are markedly expanded, leading to a reduction in current density, electron temperature, heavy particle temperature, cathode jet flow velocity, and Lorentz force. 展开更多
关键词 numerical simulation two-temperature model welding arc
在线阅读 下载PDF
WT-FCTGN:A wavelet-enhanced fully connected time-gated neural network for complex noisy traffic flow modeling
9
作者 廖志芳 孙轲 +3 位作者 刘文龙 余志武 刘承光 宋禹成 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期652-664,共13页
Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produce... Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability. 展开更多
关键词 traffic flow modeling time-series wavelet reconstruction
在线阅读 下载PDF
MATHEMATICAL MODELING AND BIFURCATION ANALYSIS FOR A BIOLOGICAL MECHANISM OF CANCER DRUG RESISTANCE
10
作者 包康博 梁桂珍 +1 位作者 田天海 张兴安 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期1165-1188,共24页
Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory ca... Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory cancer cell populations.Focusing on how cancer cells develop resistance during the encounter with targeted drugs and the immune system,we propose a mathematical model for studying the dynamics of drug resistance in a conjoint heterogeneous tumor-immune setting.We analyze the local geometric properties of the equilibria of the model.Numerical simulations show that the selectively targeted removal of sensitive cancer cells may cause the initially heterogeneous population to become a more resistant population.Moreover,the decline of immune recruitment is a stronger determinant of cancer escape from immune surveillance or targeted therapy than the decay in immune predation strength.Sensitivity analysis of model parameters provides insight into the roles of the immune system combined with targeted therapy in determining treatment outcomes. 展开更多
关键词 mathematical model drug resistance cancer heterogeneity immune system targeted therapy
在线阅读 下载PDF
Constant charge method or constant potential method:Which is better for molecular modeling of electrical double layers?
11
作者 Liang Zeng Xi Tan +5 位作者 Xiangyu Ji Shiqi Li Jinkai Zhang Jiaxing Peng Sheng Bi Guang Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期54-60,共7页
In molecular modeling of electrical double layers(EDLs),the constant charge method(CCM)is prized for its computational efficiency but cannot maintain electrode equipotentiality like the more resourceintensive constant... In molecular modeling of electrical double layers(EDLs),the constant charge method(CCM)is prized for its computational efficiency but cannot maintain electrode equipotentiality like the more resourceintensive constant potential method(CPM),potentially leading to inaccuracies.In certain scenarios,CCM can yield results identical to CPM.However,there are no clear guidelines to determine when CCM is sufficient and when CPM is required.Here,we conduct a series of molecular simulations across various electrodes and electrolytes to present a comprehensive comparison between CCM and CPM under different charging modes.Results reveal that CCM approximates CPM effectively in capturing equilibrium EDL and current-driven dynamics in open electrode systems featuring ionic liquids or regular concentration aqueous electrolytes,while CPM is indispensable in scenarios involving organic and highly concentrated aqueous electrolytes,nanoconfinement effects,and voltage-driven dynamics.This work helps to select appropriate methods for modeling EDL systems,prioritizing accuracy while considering computationalefficiency. 展开更多
关键词 Electrochemical interface Molecular dynamics Electrode polarization modeling Nanoconfinement effect
在线阅读 下载PDF
Characterization and identification towards dynamic-based electrical modeling of lithium-ion batteries
12
作者 Chuanxin Fan Kailong Liu +1 位作者 Yaxing Ren Qiao Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期738-758,共21页
Lithium-ion batteries are widely recognized as a crucial enabling technology for the advancement of electric vehicles and energy storage systems in the grid.The design of battery state estimation and control algorithm... Lithium-ion batteries are widely recognized as a crucial enabling technology for the advancement of electric vehicles and energy storage systems in the grid.The design of battery state estimation and control algorithms in battery management systems is usually based on battery models,which interpret crucial battery dynamics through the utilization of mathematical functions.Therefore,the investigation of battery dynamics with the purpose of battery system identification has garnered considerable attention in the realm of battery research.Characterization methods in terms of linear and nonlinear response of lithium-ion batteries have emerged as a prominent area of study in this field.This review has undertaken an analysis and discussion of characterization methods,with a particular focus on the motivation of battery system identification.Specifically,this work encompasses the incorporation of frequency domain nonlinear characterization methods and dynamics-based battery electrical models.The aim of this study is to establish a connection between the characterization and identification of battery systems for researchers and engineers specialized in the field of batteries,with the intention of promoting the advancement of efficient battery technology for real-world applications. 展开更多
关键词 Lithium-ion battery Battery dynamics Nonlinear characterization Nonlinear battery model
在线阅读 下载PDF
Stochastic seismic inversion and Bayesian facies classification applied to porosity modeling and igneous rock identification
13
作者 Fábio Júnior Damasceno Fernandes Leonardo Teixeira +1 位作者 Antonio Fernando Menezes Freire Wagner Moreira Lupinacci 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期918-935,共18页
We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived ... We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability. 展开更多
关键词 Stochastic inversion Bayesian classification Porosity modeling Carbonate reservoirs Igneous rocks
在线阅读 下载PDF
Modeling the effect of stand and site characteristics on the probability of mistletoe infestation in Scots pine stands using remote sensing data
14
作者 Luiza Tymińska-Czabańska Piotr Janiec +5 位作者 Pawel Hawrylo Jacek Slopek Anna Zielonka Pawel Netzel Daniel Janczyk Jaroslaw Socha 《Forest Ecosystems》 SCIE CSCD 2024年第3期296-306,共11页
Over the past decade,the presence of mistletoe(Viscum album ssp.austriacum)in Scots pine stands has increased in many European countries.Understanding the factors that influence the occurrence of mistletoe in stands i... Over the past decade,the presence of mistletoe(Viscum album ssp.austriacum)in Scots pine stands has increased in many European countries.Understanding the factors that influence the occurrence of mistletoe in stands is key to making appropriate forest management decisions to limit damage and prevent the spread of mistletoe in the future.Therefore,the main objective of this study was to determine the probability of mistletoe occurrence in Scots pine stands in relation to stand-related endogenous factors such as age,top height,and stand density,as well as topographic and edaphic factors.We used unmanned aerial vehicle(UAV)imagery from 2,247 stands to detect mistletoe in Scots pine stands,while majority stand and site characteristics were calculated from airborne laser scanning(ALS)data.Information on stand age and site type from the State Forest database were also used.We found that mistletoe infestation in Scots pine stands is influenced by stand and site characteristics.We documented that the densest,tallest,and oldest stands were more susceptible to mistletoe infestation.Site type and specific microsite conditions associated with topography were also important factors driving mistletoe occurrence.In addition,climatic water balance was a significant factor in increasing the probability of mistletoe occurrence,which is important in the context of predicted temperature increases associated with climate change.Our results are important for better understanding patterns of mistletoe infestation and ecosystem functioning under climate change.In an era of climate change and technological development,the use of remote sensing methods to determine the risk of mistletoe infestation can be a very useful tool for managing forest ecosystems to maintain forest sustainability and prevent forest disturbance. 展开更多
关键词 Generalized additive models Tree infestation Mistletoe occurrence ALS UAV Scots pine
在线阅读 下载PDF
Seismic modeling by combining the finite-difference scheme with the numerical dispersion suppression neural network
15
作者 Hong-Yong Yan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3157-3165,共9页
Seismic finite-difference(FD) modeling suffers from numerical dispersion including both the temporal and spatial dispersion, which can decrease the accuracy of the numerical modeling. To improve the accuracy and effic... Seismic finite-difference(FD) modeling suffers from numerical dispersion including both the temporal and spatial dispersion, which can decrease the accuracy of the numerical modeling. To improve the accuracy and efficiency of the conventional numerical modeling, I develop a new seismic modeling method by combining the FD scheme with the numerical dispersion suppression neural network(NDSNN). This method involves the following steps. First, a training data set composed of a small number of wavefield snapshots is generated. The wavefield snapshots with the low-accuracy wavefield data and the high-accuracy wavefield data are paired, and the low-accuracy wavefield snapshots involve the obvious numerical dispersion including both the temporal and spatial dispersion. Second, the NDSNN is trained until the network converges to simultaneously suppress the temporal and spatial dispersion.Third, the entire set of low-accuracy wavefield data is computed quickly using FD modeling with the large time step and the coarse grid. Fourth, the NDSNN is applied to the entire set of low-accuracy wavefield data to suppress the numerical dispersion including the temporal and spatial dispersion.Numerical modeling examples verify the effectiveness of my proposed method in improving the computational accuracy and efficiency. 展开更多
关键词 Finite difference Seismic modeling Numerical dispersion suppression Computational accuracy Computational efficiency
在线阅读 下载PDF
Statistical Channel Modeling for Indoor VLC Communications Based on Channel Measurements
16
作者 Shuo Liu Pan Tang +5 位作者 Jianhua Zhang Yue Yin Yu Tong Baobao Liu Guangyi Liu Liang Xia 《China Communications》 SCIE CSCD 2024年第1期131-147,共17页
Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we... Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM. 展开更多
关键词 channel characteristics channel measurement channel modeling 6G spatial lobe VLC
在线阅读 下载PDF
Resistance of full-scale beams against close-in explosions.Numerical modeling and field tests
17
作者 A.Prado A.Alañón +5 位作者 R.Castedo A.P.Santos L.M.López M.Chiquito M.Bermejo C.Oggeri 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期35-47,共13页
This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare ... This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed. 展开更多
关键词 Blast test Numerical simulation LS-DYNA Concrete model Mesh effect Full-scale beams
在线阅读 下载PDF
Two Monte Carlo-based simulators for imaging-system modeling and projection simulation of flat-panel X-ray source
18
作者 Meng-Ke Qi Ting He +7 位作者 Yi-Wen Zhou Jing Kang Zeng-Xiang Pan Song Kang Wang-Jiang Wu Jun Chen Ling-Hong Zhou Yuan Xu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第7期31-46,共16页
The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and res... The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS.The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations.However,the computation time of Monte Carlo(MC)simulation is independent of the size of the patterned arrays in FPXS.This study proposes two high-efficiency MC projection simulators for FPXS:a graphics processing unit(GPU)-based phase-space sampling MC(gPSMC)simulator and GPU-based fluence sampling MC(gFSMC)simulator.The two simulators comprise three components:imaging-system modeling,photon initialization,and physical-interaction simulations in the phantom.Imaging-system modeling was performed by modeling the FPXS,imaging geometry,and detector.The gPSMC simulator samples the initial photons from the phase space,whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map.The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels,and projections based on the two simulators were calculated.The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections,and the efficiencies were evaluated by comparing the computation time.The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms. 展开更多
关键词 Flat-panel X-ray source(FPXS) Imaging-system modeling Projection simulation Monte Carlo-based simulators
在线阅读 下载PDF
A stable staggered-grid finite-difference scheme for acoustic modeling beyond conventional stability limit
19
作者 Jing-Yi Xu Yang Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期182-194,共13页
Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these met... Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these methods are inevitably limited by the maximum Courant-Friedrichs-Lewy(CFL)numbers,making them unstable when modeling with large time sampling intervals or small grid spacings.To solve this problem,we extend a stable SGFD scheme by controlling SGFD dispersion relations and maximizing the maximum CFL numbers.First,to improve modeling stability,we minimize the error between the FD dispersion relation and the exact relation in the given wave-number region,and make the FD dispersion approach a given function outside the given wave-number area,thus breaking the conventional limits of the maximum CFL number.Second,to obtain high modeling accuracy,we use the SGFD scheme based on the Remez algorithm to compute the FD coefficients.In addition,the hybrid absorbing boundary condition is adopted to suppress boundary reflections and we find a suitable weighting coefficient for the proposed scheme.Theoretical derivation and numerical modeling demonstrate that the proposed scheme can maintain high accuracy in the modeling process and the value of the maximum CFL number of the proposed scheme can exceed that of the conventional SGFD scheme when adopting a small maximum effective wavenumber,indicating that the proposed scheme improves stability during the modeling. 展开更多
关键词 Acoustic wave Staggered-grid finite-difference(SGFD) modeling Courant-friedrichs-lewy(CFL)number Stability
在线阅读 下载PDF
Static-to-kinematic modeling and experimental validation of tendon-driven quasi continuum manipulators with nonconstant subsegment stiffness
20
作者 郑先杰 丁萌 +2 位作者 刘辽雪 王璐 郭毓 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期316-326,共11页
Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-const... Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-constant subsegment stiffness structure for tendon-driven quasi continuum robots(TDQCRs) comprising rigid-flexible coupling subsegments.Aiming at real-time control applications, we present a novel static-to-kinematic modeling approach to gain a comprehensive understanding of the TDQCR model. The analytical subsegment-based kinematics for the multisection manipulator is derived based on screw theory and product of exponentials formula, and the static model considering gravity loading,actuation loading, and robot constitutive laws is established. Additionally, the effect of tension attenuation caused by routing channel friction is considered in the robot statics, resulting in improved model accuracy. The root-mean-square error between the outputs of the static model and the experimental system is less than 1.63% of the arm length(0.5 m). By employing the proposed static model, a mapping of bending angles between the configuration space and the subsegment space is established. Furthermore, motion control experiments are conducted on our TDQCR system, and the results demonstrate the effectiveness of the static-to-kinematic model. 展开更多
关键词 static-to-kinematic modeling scheme tendon-driven quasi continuum robot nonconstant subsegment stiffness tension attenuation effect
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部