Multiple earth observing satellites need to communicate with each other to observe plenty of targets on the Earth together. The factors, such as external interference, result in satellite information interaction delay...Multiple earth observing satellites need to communicate with each other to observe plenty of targets on the Earth together. The factors, such as external interference, result in satellite information interaction delays, which is unable to ensure the integrity and timeliness of the information on decision making for satellites. And the optimization of the planning result is affected. Therefore, the effect of communication delay is considered during the multi-satel ite coordinating process. For this problem, firstly, a distributed cooperative optimization problem for multiple satellites in the delayed communication environment is formulized. Secondly, based on both the analysis of the temporal sequence of tasks in a single satellite and the dynamically decoupled characteristics of the multi-satellite system, the environment information of multi-satellite distributed cooperative optimization is constructed on the basis of the directed acyclic graph(DAG). Then, both a cooperative optimization decision making framework and a model are built according to the decentralized partial observable Markov decision process(DEC-POMDP). After that, a satellite coordinating strategy aimed at different conditions of communication delay is mainly analyzed, and a unified processing strategy on communication delay is designed. An approximate cooperative optimization algorithm based on simulated annealing is proposed. Finally, the effectiveness and robustness of the method presented in this paper are verified via the simulation.展开更多
Task allocation for munition swarms is constrained by reachable region limitations and real-time requirements.This paper proposes a reachable region guided distributed coalition formation game(RRGDCF)method to address...Task allocation for munition swarms is constrained by reachable region limitations and real-time requirements.This paper proposes a reachable region guided distributed coalition formation game(RRGDCF)method to address these issues.To enable efficient online task allocation,a reachable region prediction strategy based on fully connected neural networks(FCNNs)is developed.This strategy integrates high-fidelity data generated from the golden section method and low-fidelity data from geometric approximation in an optimal mixing ratio to form multi-fidelity samples,significantly enhancing prediction accuracy and efficiency under limited high-fidelity samples.These predictions are then incorporated into the coalition formation game framework.A tabu search mechanism guided by the reachable region center directs munitions to execute tasks within their respective reachable regions,mitigating redundant operations on ineffective coalition structures.Furthermore,an adaptive guidance coalition formation strategy optimizes allocation plans by leveraging the hit probabilities of munitions,replacing traditional random coalition formation methods.Simulation results demonstrate that RRGDCF surpasses the contract network protocol and traditional coalition formation game algorithms in optimality and computational efficiency.Hardware experiments further validate the method's practicality in dynamic scenarios.展开更多
基金supported by the National Science Foundation for Young Scholars of China(6130123471401175)
文摘Multiple earth observing satellites need to communicate with each other to observe plenty of targets on the Earth together. The factors, such as external interference, result in satellite information interaction delays, which is unable to ensure the integrity and timeliness of the information on decision making for satellites. And the optimization of the planning result is affected. Therefore, the effect of communication delay is considered during the multi-satel ite coordinating process. For this problem, firstly, a distributed cooperative optimization problem for multiple satellites in the delayed communication environment is formulized. Secondly, based on both the analysis of the temporal sequence of tasks in a single satellite and the dynamically decoupled characteristics of the multi-satellite system, the environment information of multi-satellite distributed cooperative optimization is constructed on the basis of the directed acyclic graph(DAG). Then, both a cooperative optimization decision making framework and a model are built according to the decentralized partial observable Markov decision process(DEC-POMDP). After that, a satellite coordinating strategy aimed at different conditions of communication delay is mainly analyzed, and a unified processing strategy on communication delay is designed. An approximate cooperative optimization algorithm based on simulated annealing is proposed. Finally, the effectiveness and robustness of the method presented in this paper are verified via the simulation.
基金supported by the National Natural Science Foundation of China(Grant 52372347,52425211,52272360)。
文摘Task allocation for munition swarms is constrained by reachable region limitations and real-time requirements.This paper proposes a reachable region guided distributed coalition formation game(RRGDCF)method to address these issues.To enable efficient online task allocation,a reachable region prediction strategy based on fully connected neural networks(FCNNs)is developed.This strategy integrates high-fidelity data generated from the golden section method and low-fidelity data from geometric approximation in an optimal mixing ratio to form multi-fidelity samples,significantly enhancing prediction accuracy and efficiency under limited high-fidelity samples.These predictions are then incorporated into the coalition formation game framework.A tabu search mechanism guided by the reachable region center directs munitions to execute tasks within their respective reachable regions,mitigating redundant operations on ineffective coalition structures.Furthermore,an adaptive guidance coalition formation strategy optimizes allocation plans by leveraging the hit probabilities of munitions,replacing traditional random coalition formation methods.Simulation results demonstrate that RRGDCF surpasses the contract network protocol and traditional coalition formation game algorithms in optimality and computational efficiency.Hardware experiments further validate the method's practicality in dynamic scenarios.