期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Task assignment under constraint of timing sequential for cooperative air combat 被引量:6
1
作者 Chengwei Ruan Zhongliang Zhou +1 位作者 Hongqiang Liu Haiyan Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期836-844,共9页
According to the previous achievement, the task assignment under the constraint of timing continuity for a cooperative air combat is studied. An extensive task assignment scenario with the background of the cooperativ... According to the previous achievement, the task assignment under the constraint of timing continuity for a cooperative air combat is studied. An extensive task assignment scenario with the background of the cooperative air combat is proposed. The utility and time of executing a task as well as the continuous combat ability are defined. The concept of the matching method of weapon and target is modified based on the analysis of the air combat scenario. The constraint framework is also redefined according to a new objective function. The constraints of timing and continuity are formulated with a new method, at the same time, the task assignment and integer programming models of the cooperative combat are established. Finally, the assignment problem is solved using the integrated linear programming software and the simulation shows that it is feasible to apply this modified model in the cooperative air combat for tasks cooperation and it is also efficient to optimize the resource assignment. 展开更多
关键词 cooperative air combat task assignment timing constraint task utility integer programming
在线阅读 下载PDF
Task assignment in ground-to-air confrontation based on multiagent deep reinforcement learning 被引量:4
2
作者 Jia-yi Liu Gang Wang +2 位作者 Qiang Fu Shao-hua Yue Si-yuan Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期210-219,共10页
The scale of ground-to-air confrontation task assignments is large and needs to deal with many concurrent task assignments and random events.Aiming at the problems where existing task assignment methods are applied to... The scale of ground-to-air confrontation task assignments is large and needs to deal with many concurrent task assignments and random events.Aiming at the problems where existing task assignment methods are applied to ground-to-air confrontation,there is low efficiency in dealing with complex tasks,and there are interactive conflicts in multiagent systems.This study proposes a multiagent architecture based on a one-general agent with multiple narrow agents(OGMN)to reduce task assignment conflicts.Considering the slow speed of traditional dynamic task assignment algorithms,this paper proposes the proximal policy optimization for task assignment of general and narrow agents(PPOTAGNA)algorithm.The algorithm based on the idea of the optimal assignment strategy algorithm and combined with the training framework of deep reinforcement learning(DRL)adds a multihead attention mechanism and a stage reward mechanism to the bilateral band clipping PPO algorithm to solve the problem of low training efficiency.Finally,simulation experiments are carried out in the digital battlefield.The multiagent architecture based on OGMN combined with the PPO-TAGNA algorithm can obtain higher rewards faster and has a higher win ratio.By analyzing agent behavior,the efficiency,superiority and rationality of resource utilization of this method are verified. 展开更多
关键词 Ground-to-air confrontation task assignment General and narrow agents Deep reinforcement learning Proximal policy optimization(PPO)
在线阅读 下载PDF
UAVs cooperative task assignment and trajectory optimization with safety and time constraints 被引量:2
3
作者 Duo Zheng Yun-fei Zhang +1 位作者 Fan Li Peng Cheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期149-161,共13页
This paper proposes new methods and strategies for Multi-UAVs cooperative attacks with safety and time constraints in a complex environment.Delaunay triangle is designed to construct a map of the complex flight enviro... This paper proposes new methods and strategies for Multi-UAVs cooperative attacks with safety and time constraints in a complex environment.Delaunay triangle is designed to construct a map of the complex flight environment for aerial vehicles.Delaunay-Map,Safe Flight Corridor(SFC),and Relative Safe Flight Corridor(RSFC)are applied to ensure each UAV flight trajectory's safety.By using such techniques,it is possible to avoid the collision with obstacles and collision between UAVs.Bezier-curve is further developed to ensure that multi-UAVs can simultaneously reach the target at the specified time,and the trajectory is within the flight corridor.The trajectory tracking controller is also designed based on model predictive control to track the planned trajectory accurately.The simulation and experiment results are presented to verifying developed strategies of Multi-UAV cooperative attacks. 展开更多
关键词 MULTI-UAV Cooperative attacks task assignment Trajectory optimization Safety constraints
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部