Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rul...Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rule are analyzed and compared. A new combination approach is proposed. Calculate the reliabilities of evidence sources using existing evidences. Construct reliabilities judge matrixes and get the weights of each evidence source. Weight average all inputted evidences. Combine processed evidences with D-S combination rule repeatedly to identify a target. The application in multi-sensor target reeognition as well as the comparison with typical alternatives all validated that this approach can dispose highly conflict evidences efficiently and get reasonable reeognition results rapidly.展开更多
When range high-resolution radar is applied to target recognition,it is quite possible for the high-resolution range profiles(HRRPs)of group targets in a beam to overlap,which reduces the target recognition performanc...When range high-resolution radar is applied to target recognition,it is quite possible for the high-resolution range profiles(HRRPs)of group targets in a beam to overlap,which reduces the target recognition performance of the radar.In this paper,we propose a group target recognition method based on a weighted mean shift(weighted-MS)clustering method.During the training phase,subtarget features are extracted based on the template database,which is established through simulation or data acquisition,and the features are fed to the support vector machine(SVM)classifier to obtain the classifier parameters.In the test phase,the weighted-MS algorithm is exploited to extract the HRRP of each subtarget.Then,the features of the subtarget HRRP are extracted and used as input in the SVM classifier to be recognized.Compared to the traditional group target recognition method,the proposed method has the advantages of requiring only a small amount of computation,setting parameters automatically,and having no requirement for target motion.The experimental results based on the measured data show that the method proposed in this paper has better recognition performance and is more robust against noise than other recognition methods.展开更多
This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed...This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.展开更多
Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D informa...Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D information,3D information performs better in separating objects and background.However,an aircraft platform can have a negative influence on LIDAR obtained data because of various flight attitudes,flight heights and atmospheric disturbances.A structure of global feature based 3D automatic target recognition method for airborne LIDAR is proposed,which is composed of offline phase and online phase.The performance of four global feature descriptors is compared.Considering the summed volume region(SVR) discrepancy in real objects,SVR selection is added into the pre-processing operations to eliminate mismatching clusters compared with the interested target.Highly reliable simulated data are obtained under various sensor’s altitudes,detection distances and atmospheric disturbances.The final experiments results show that the added step increases the recognition rate by above 2.4% and decreases the execution time by about 33%.展开更多
The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical charac- teristics. But how to determine the proper number of the models is a problem. This paper devel...The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical charac- teristics. But how to determine the proper number of the models is a problem. This paper develops a variational Bayesian mixture of factor analyzers (VBMFA) model. This procedure can obtain a lower bound on the Bayesian integral using the Jensen's inequality. An analytical solution of the Bayesian integral could be obtained by a hypothesis that latent variables in the model are indepen- dent. During computing the parameters of the model, birth-death moves are utilized to determine the optimal number of model au- tomatically. Experimental results for measured data show that the VBMFA method has better recognition performance than FA and MFA method.展开更多
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S...In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.展开更多
Abstract: A array of the azimuthally averaged range-profile vectors and the inter-class and intra-class divergence matrixesare constructed iwth many frames of the high resolution range profiles which result from radar...Abstract: A array of the azimuthally averaged range-profile vectors and the inter-class and intra-class divergence matrixesare constructed iwth many frames of the high resolution range profiles which result from radar echoes of airplanes. Takingthe methods of whitening transformation and SVD produces a system of subspace vectors for target recognition. Where-upon, a template library for target recognition is built by the projection of a class-mean vector made from the radar dataonto the subspace for recognition. By Euclidean distance, a comparison is made between the above projection and eachtemplate in the library, to decide which class the target belongs to. Finally, simulations with the experimental radar dataarte given to show that the proposed method is robust to variation in azimuth and immune to additive Gaussian noisewhen SNR≥5dB.展开更多
Aiming at the problem of shadow interference in UAV's ground reconnaissance,a color and polarization synergistic target detection method is proposed for anti-shadow interference,based on the influence of two physi...Aiming at the problem of shadow interference in UAV's ground reconnaissance,a color and polarization synergistic target detection method is proposed for anti-shadow interference,based on the influence of two physical characteristics(wavelength and polarization)under different illuminations.A valid fusion strategy is proposed via integrating two separate detection results on color and polarization images.Moreover,a local enhancement and recognition module(LER)is introduced to boost the performance.Based on our built dataset,experimental results show that our method achieves mAPof 87.76%,and12.37%higher than that of color image and 14.68%higher than that of polarization image.展开更多
Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is ba...Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.展开更多
Complex targets are irradiated by UWB radar, not only the mirror scattering echoes but also the multiscattering interacting echoes are included in target echoes. These two echoes can not be distinguished by classical ...Complex targets are irradiated by UWB radar, not only the mirror scattering echoes but also the multiscattering interacting echoes are included in target echoes. These two echoes can not be distinguished by classical frequency spectrum and power spectrurm. Time-domain bispectrum features of UWB radar signals that mingled with noise are analyzed, then processing this kind of signal using the method of time-domain bispectrum is experimented. At last, some UW-B radar returns with different signal noise ratio are simulated using the method of time-domain bispectrum Theoretical analysis and the results of simulation show that the method of extraction partial features of UWB radar targets based on time-domain bispectrum is good, and target classification and recognition can be implemented using those features.展开更多
Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting...Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting to changes in the environment. To realize the whole process of SAR automatic target recognition (ATR), es- pecially for the detection and recognition of vehicles, an algorithm based on kernel fisher discdminant analysis (KFDA) is proposed. First, in order to make a better description of the difference be- tween the background and the target, KFDA is extended to the detection part. Image samples are obtained with a dual-window approach and features of the inner and outer window samples are extracted by using KFDA. The difference between the features of inner and outer window samples is compared with a threshold to determine whether a vehicle exists. Second, for the target area, we propose an improved KFDA-IMED (image Euclidean distance) combined with a support vector machine (SVM) to recognize the vehicles. Experimental results validate the performance of our method. On the detection task, our proposed method obtains not only a high detection rate but also a low false alarm rate without using any prior information. For the recognition task, our method overcomes the SAR image aspect angle sensitivity, reduces the requirements for image preprocessing and improves the recogni- tion rate.展开更多
The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article propose...The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs).展开更多
In this paper, the problem of reliable automatic target recognition from incoherent radar returns is discussed and a new method for ship target recognition is proposed. Based on this method, an experimental system for...In this paper, the problem of reliable automatic target recognition from incoherent radar returns is discussed and a new method for ship target recognition is proposed. Based on this method, an experimental system for ship target recognition is implemented. The results obtained from the theoretical and experimental study indicate that a high reliability of recognition can be achieved by using the designed recognition system. An average success rate of more than 90% is reached for 8 classes of ships.展开更多
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
For radar high resolution range profile (HRRP) recognition, three aspects are of great importance to improve the performance, i.e. discrimination for outlier, classification for inner and an accurate description for f...For radar high resolution range profile (HRRP) recognition, three aspects are of great importance to improve the performance, i.e. discrimination for outlier, classification for inner and an accurate description for feature space. To tackle these issues, a novel target recognition method is designed, denoted by the multiple support vectors (multi-SV) method. With the proposed method, a special framework is constructed by a treble correlate support vector model to segment the feature space to two regions with the distribution of density, and then the description and classification hyperplane for each region are achieved. Based on the support vector framework, this method needs less memory and computation complexity to fit practical radar HRRP recognition. Finally, the experiment based on the measured data verifies the excellent performance of this method.展开更多
The micro-Doppler effect of moving targets may suffer from aliasing and Doppler migration due to the translational motion, which affects the application in real-time target identification. A new compensating method fo...The micro-Doppler effect of moving targets may suffer from aliasing and Doppler migration due to the translational motion, which affects the application in real-time target identification. A new compensating method for the rotationally symmetric target is proposed and demonstrated. By utilizing the micro-Doppler symmetry cancellation effect, the method can accurately compensate the translation effect, meanwhile, it behaves well in noise restraint. Computer simulations verify the high accuracy and efficiency of this method.展开更多
The dynamic characteristics related to micro-motions, such as mechanical vibration or rotation, play an essential role in classifying and recognizing ballistic targets in the midcourse, and recent researches explore w...The dynamic characteristics related to micro-motions, such as mechanical vibration or rotation, play an essential role in classifying and recognizing ballistic targets in the midcourse, and recent researches explore ways of extracting the micro-motion features from radar signals of ballistic targets. In this paper, we focus on how to investigate the micro-motion dynamic characteristics of the ballistic targets from the signals based on infrared (IR) detection, which is mainly achieved by analyzing the periodic fluctuation characteristics of the target IR irradiance intensity signatures. Simulation experiments demonstrate that the periodic characteristics of IR signatures can be used to distinguish different micro motion types and estimate related parameters. Consequently, this is possible to determine the micro-motion dynamics of ballistic targets based on IR detection.展开更多
This paper deals with the detection performance evaluation of a new nonparametric procedure. The test statistics of the proposed processor have a simple statistical form which is derived from that of the suboptimum ra...This paper deals with the detection performance evaluation of a new nonparametric procedure. The test statistics of the proposed processor have a simple statistical form which is derived from that of the suboptimum rank test procedure [1]. The performance of the new distributionfree detection technique is obtained through Monte-Carlo simulations and compared with that of the suboptimum scheme when detecting nonfluctuating target embedded in Gaussian noise and in the presence of interfering target returns among the reference samples. The new nonparametric detector is shown to give a relative improvement over the suboptimum processor, especially, when the background environment contains a numerous-number of extraneous targets.展开更多
In this paper we discuss a kind of multitarget tracking and association method based on the data fusion of heterogeneous multiple feature data gained by a sensor such as space state, signal amplitude, Doppler frequenc...In this paper we discuss a kind of multitarget tracking and association method based on the data fusion of heterogeneous multiple feature data gained by a sensor such as space state, signal amplitude, Doppler frequency and so on. In order to introduce quantitatively those heterogeneous multiple feature data which are possibly gained by a sensor into the discussion of tracking and association problem, we define a correlation measure which we explain as the generalization of conventional association decision. In conventional Nearest Neighbor method, the decision function can take only two values, 1 or 0, to represent the decision of association or not association. In our method, correlation measure can be take any real value from 0 to 1 to represent the extent of correlation. Considering the practical circumstances that some feature data might not be easily gained continuously, we introduce an effective factor to deal with these cases. In the paper we also discuss the comparative computer simulation tests and give the results.展开更多
Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this iss...Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.展开更多
基金This project was supported by the National "863" High Technology Research and Development Program of China(2001AA602021)
文摘Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rule are analyzed and compared. A new combination approach is proposed. Calculate the reliabilities of evidence sources using existing evidences. Construct reliabilities judge matrixes and get the weights of each evidence source. Weight average all inputted evidences. Combine processed evidences with D-S combination rule repeatedly to identify a target. The application in multi-sensor target reeognition as well as the comparison with typical alternatives all validated that this approach can dispose highly conflict evidences efficiently and get reasonable reeognition results rapidly.
文摘When range high-resolution radar is applied to target recognition,it is quite possible for the high-resolution range profiles(HRRPs)of group targets in a beam to overlap,which reduces the target recognition performance of the radar.In this paper,we propose a group target recognition method based on a weighted mean shift(weighted-MS)clustering method.During the training phase,subtarget features are extracted based on the template database,which is established through simulation or data acquisition,and the features are fed to the support vector machine(SVM)classifier to obtain the classifier parameters.In the test phase,the weighted-MS algorithm is exploited to extract the HRRP of each subtarget.Then,the features of the subtarget HRRP are extracted and used as input in the SVM classifier to be recognized.Compared to the traditional group target recognition method,the proposed method has the advantages of requiring only a small amount of computation,setting parameters automatically,and having no requirement for target motion.The experimental results based on the measured data show that the method proposed in this paper has better recognition performance and is more robust against noise than other recognition methods.
基金supported by the National Natural Science Foundation of China(Grant No.61973037 and No.61673066).
文摘This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.
基金This research was supported by National Natural Science Foundation of China(No.61271353,61871389)Major Funding Projects of National University of Defense Technology(No.ZK18-01-02)Foundation of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2018ZR09).
文摘Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D information,3D information performs better in separating objects and background.However,an aircraft platform can have a negative influence on LIDAR obtained data because of various flight attitudes,flight heights and atmospheric disturbances.A structure of global feature based 3D automatic target recognition method for airborne LIDAR is proposed,which is composed of offline phase and online phase.The performance of four global feature descriptors is compared.Considering the summed volume region(SVR) discrepancy in real objects,SVR selection is added into the pre-processing operations to eliminate mismatching clusters compared with the interested target.Highly reliable simulated data are obtained under various sensor’s altitudes,detection distances and atmospheric disturbances.The final experiments results show that the added step increases the recognition rate by above 2.4% and decreases the execution time by about 33%.
基金supported in part by the National Natural Science Foundation of China(60772140)the Program for Cheung Kong Scholarsand Innovative Research Team in University(IRT0645)
文摘The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical charac- teristics. But how to determine the proper number of the models is a problem. This paper develops a variational Bayesian mixture of factor analyzers (VBMFA) model. This procedure can obtain a lower bound on the Bayesian integral using the Jensen's inequality. An analytical solution of the Bayesian integral could be obtained by a hypothesis that latent variables in the model are indepen- dent. During computing the parameters of the model, birth-death moves are utilized to determine the optimal number of model au- tomatically. Experimental results for measured data show that the VBMFA method has better recognition performance than FA and MFA method.
基金Projects(61471370,61401479)supported by the National Natural Science Foundation of China
文摘In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.
基金This project was supported by Advanced National Defence Program of China(41307050103)Advanced National Defence Found of China(00JS24.3.2DZ0117).
文摘Abstract: A array of the azimuthally averaged range-profile vectors and the inter-class and intra-class divergence matrixesare constructed iwth many frames of the high resolution range profiles which result from radar echoes of airplanes. Takingthe methods of whitening transformation and SVD produces a system of subspace vectors for target recognition. Where-upon, a template library for target recognition is built by the projection of a class-mean vector made from the radar dataonto the subspace for recognition. By Euclidean distance, a comparison is made between the above projection and eachtemplate in the library, to decide which class the target belongs to. Finally, simulations with the experimental radar dataarte given to show that the proposed method is robust to variation in azimuth and immune to additive Gaussian noisewhen SNR≥5dB.
基金supported by the Key Research and Development Program of the Key R&D Project in Shaanxi Province (Grant No.2021GXLH-01-20)the Open Fund Project of Key Laboratory of Opto-electronic Information Processing,Chinese Academy of Sciences (Grant No.OEIP-O-202001)+2 种基金the China Industry-universityresearch Innovation Fund (Grant No.2021ITA10006)the National Natural Science Foundation of China (Grant No.62105372)Project Pogram of Science and Technology on Micro-system Laboratory (Grant No.6142804231001)。
文摘Aiming at the problem of shadow interference in UAV's ground reconnaissance,a color and polarization synergistic target detection method is proposed for anti-shadow interference,based on the influence of two physical characteristics(wavelength and polarization)under different illuminations.A valid fusion strategy is proposed via integrating two separate detection results on color and polarization images.Moreover,a local enhancement and recognition module(LER)is introduced to boost the performance.Based on our built dataset,experimental results show that our method achieves mAPof 87.76%,and12.37%higher than that of color image and 14.68%higher than that of polarization image.
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.
基金This work was supported in part by National Defence Science and Technology Foundation (413220402)
文摘Complex targets are irradiated by UWB radar, not only the mirror scattering echoes but also the multiscattering interacting echoes are included in target echoes. These two echoes can not be distinguished by classical frequency spectrum and power spectrurm. Time-domain bispectrum features of UWB radar signals that mingled with noise are analyzed, then processing this kind of signal using the method of time-domain bispectrum is experimented. At last, some UW-B radar returns with different signal noise ratio are simulated using the method of time-domain bispectrum Theoretical analysis and the results of simulation show that the method of extraction partial features of UWB radar targets based on time-domain bispectrum is good, and target classification and recognition can be implemented using those features.
基金supported by the National Natural Science Foundation of China(6107113961471019+5 种基金61171122)the Aeronautical Science Foundation of China(20142051022)the Foundation of ATR Key Lab(C80264)the National Natural Science Foundation of China(NNSFC)under the RSE-NNSFC Joint Project(2012-2014)(61211130210)with Beihang Universitythe RSE-NNSFC Joint Project(2012-2014)(61211130309)with Anhui Universitythe"Sino-UK Higher Education Research Partnership for Ph D Studies"Joint Project(2013-2015)
文摘Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting to changes in the environment. To realize the whole process of SAR automatic target recognition (ATR), es- pecially for the detection and recognition of vehicles, an algorithm based on kernel fisher discdminant analysis (KFDA) is proposed. First, in order to make a better description of the difference be- tween the background and the target, KFDA is extended to the detection part. Image samples are obtained with a dual-window approach and features of the inner and outer window samples are extracted by using KFDA. The difference between the features of inner and outer window samples is compared with a threshold to determine whether a vehicle exists. Second, for the target area, we propose an improved KFDA-IMED (image Euclidean distance) combined with a support vector machine (SVM) to recognize the vehicles. Experimental results validate the performance of our method. On the detection task, our proposed method obtains not only a high detection rate but also a low false alarm rate without using any prior information. For the recognition task, our method overcomes the SAR image aspect angle sensitivity, reduces the requirements for image preprocessing and improves the recogni- tion rate.
基金supported by the National Natural Science Foundation of China(Grant No.61973037)and(Grant No.61871414)Postdoctoral Fundation of China(Grant No.2022M720419)。
文摘The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs).
文摘In this paper, the problem of reliable automatic target recognition from incoherent radar returns is discussed and a new method for ship target recognition is proposed. Based on this method, an experimental system for ship target recognition is implemented. The results obtained from the theoretical and experimental study indicate that a high reliability of recognition can be achieved by using the designed recognition system. An average success rate of more than 90% is reached for 8 classes of ships.
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
文摘For radar high resolution range profile (HRRP) recognition, three aspects are of great importance to improve the performance, i.e. discrimination for outlier, classification for inner and an accurate description for feature space. To tackle these issues, a novel target recognition method is designed, denoted by the multiple support vectors (multi-SV) method. With the proposed method, a special framework is constructed by a treble correlate support vector model to segment the feature space to two regions with the distribution of density, and then the description and classification hyperplane for each region are achieved. Based on the support vector framework, this method needs less memory and computation complexity to fit practical radar HRRP recognition. Finally, the experiment based on the measured data verifies the excellent performance of this method.
文摘The micro-Doppler effect of moving targets may suffer from aliasing and Doppler migration due to the translational motion, which affects the application in real-time target identification. A new compensating method for the rotationally symmetric target is proposed and demonstrated. By utilizing the micro-Doppler symmetry cancellation effect, the method can accurately compensate the translation effect, meanwhile, it behaves well in noise restraint. Computer simulations verify the high accuracy and efficiency of this method.
文摘The dynamic characteristics related to micro-motions, such as mechanical vibration or rotation, play an essential role in classifying and recognizing ballistic targets in the midcourse, and recent researches explore ways of extracting the micro-motion features from radar signals of ballistic targets. In this paper, we focus on how to investigate the micro-motion dynamic characteristics of the ballistic targets from the signals based on infrared (IR) detection, which is mainly achieved by analyzing the periodic fluctuation characteristics of the target IR irradiance intensity signatures. Simulation experiments demonstrate that the periodic characteristics of IR signatures can be used to distinguish different micro motion types and estimate related parameters. Consequently, this is possible to determine the micro-motion dynamics of ballistic targets based on IR detection.
文摘This paper deals with the detection performance evaluation of a new nonparametric procedure. The test statistics of the proposed processor have a simple statistical form which is derived from that of the suboptimum rank test procedure [1]. The performance of the new distributionfree detection technique is obtained through Monte-Carlo simulations and compared with that of the suboptimum scheme when detecting nonfluctuating target embedded in Gaussian noise and in the presence of interfering target returns among the reference samples. The new nonparametric detector is shown to give a relative improvement over the suboptimum processor, especially, when the background environment contains a numerous-number of extraneous targets.
文摘In this paper we discuss a kind of multitarget tracking and association method based on the data fusion of heterogeneous multiple feature data gained by a sensor such as space state, signal amplitude, Doppler frequency and so on. In order to introduce quantitatively those heterogeneous multiple feature data which are possibly gained by a sensor into the discussion of tracking and association problem, we define a correlation measure which we explain as the generalization of conventional association decision. In conventional Nearest Neighbor method, the decision function can take only two values, 1 or 0, to represent the decision of association or not association. In our method, correlation measure can be take any real value from 0 to 1 to represent the extent of correlation. Considering the practical circumstances that some feature data might not be easily gained continuously, we introduce an effective factor to deal with these cases. In the paper we also discuss the comparative computer simulation tests and give the results.
基金supported by the National Natural Science Foundation of China(61903305,62073267)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.